



















Table ŗ General features of ponding basin and coastal study sites.

|             |         |                         |                          |           |                      | and the state of t | l denin     |
|-------------|---------|-------------------------|--------------------------|-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ı           | i       | i                       | and Residential          |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|             |         |                         | Commerical               | QRB       | MARI                 | Recharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CWR         |
| ı           | 1       | 1                       | and Commercial           |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !           |
|             |         |                         | Residential              | QRB       | MARI                 | Recharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NAS         |
| ı           | 1       | ı                       | Commercial               | QRB       | MARI/Alifan          | Recharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WAB         |
| 1           | t       | 1                       | Commerical               | QRB       | MARI                 | Recharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EAB         |
| I           | < 300   | .30                     | and Natural              |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |
|             |         |                         | Commercial               | QRB       | MARI                 | Recharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AP          |
|             | `       |                         | Residential <sup>3</sup> | ALLU      | a-                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i           |
| < 1         | 200,000 |                         |                          | AAA/SYC/  | BARR/MARI            | Resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MT          |
| $102^{6}$   | 6,400   | . 08                    | Residential              | GUAM      | BARR                 | Resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PEREZ.      |
| 7.6         | 68,000  |                         | and Residential          |           |                      | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |
|             |         |                         | Commercial               | GUAM      | BARR                 | Resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEDEDO      |
| ^<br>5      | 7,000   | .33                     | Residential              | GUAM      | BARR                 | Conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 L3        |
| 100         | 33,000  |                         | Residential              | GUAM      | BARR                 | Conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L2          |
| > 205       | 7,200   | > 1.0                   | Residential              | GUAM      | MARI                 | Conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , B3        |
| ^ 1         | 3,000   | > 1.0                   | Residential              | GUAM      | MARI                 | Conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B2w and B2d |
| < 1         | 11,300  | .09                     | and Residential          |           |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|             |         |                         | Commercial2              | CHA-SA    | AGAR                 | Resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Blc and Ble |
| cm/Hr.      | m3      | km <sup>2</sup>         | SOURCE                   | AREA      | FORMATION            | ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| RATE        | TMULIOV | AREA                    | RUNOFF                   | IN        | LIMESTONE            | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| PERCOLATION | BASIN4  | DRAINAGE                |                          | SOIL TYPE |                      | TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|             |         |                         |                          | clay      | Agat-Asan-Atate clay | AAA – Aga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|             |         | ,                       | ı                        | ау        | Chacha-Saipan clay   | -SA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|             |         | ay deposit              | <u>г</u>                 | one       | Barrigada limestone  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|             |         | its                     | į                        | no (      | Mariana limestone    | MARI -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
|             |         | Sainan-Yona-Chacha clay | SYC - Sainan-Yona        | us.       | Agana argillaceous   | AGAR -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KEY:        |

drainage from this site enters the Harmon Sink which is Mariana limestone.

<sup>-</sup> runoff from storm drain is commercially derived, natural runoff is residential.

 $<sup>\</sup>omega$  4 raw and treated sewage imput.

observations of the site. basin volumes are based on actual available data or rough calculations using maps and field

at 4-5 m head, based on field observations.

<sup>90</sup> at 3 m head during construction, observed rate <5 cm/hr.

Table 2. Sampling frequency for ponding basins and coastal discharge sites.

The sampling set includes the total number of phase one and two sets.

During the monitoring phase almost all parameter were being analyzed.

| GLASS THE OFFICE | PHASE 1           | MONITORING | MONITORING | SAMPLING<br>SETS | PERCENT<br>TIME DRY |
|------------------|-------------------|------------|------------|------------------|---------------------|
| SAMPLING SITES   | BEGINNING         | BEGINNING  | ENDED      | SELS             | TIME DKI            |
| Ble              | 12-12-75          | 7- 6-76    | 4-13-77    | 35               | 0                   |
| Blc              | 12-16-77          | 7- 6-76    | 4-13-77    | 35               | 0                   |
| B2w              | 2-13-75           | 7- 6-76    | 4-13-77    | 32               | 14                  |
| B2d              | 1- 1-76           | 7- 6-76    | 4-13-77    | 33               | 0                   |
| В3               | 12- 2-75          | 7- 6-76    | 4-13-77    | 27               | 18                  |
| L2               | 12- 2-75          | 7-19-76    | 4-13-77    | 27               | 25                  |
| L3               | 1- 1-76           |            | 7-19-76    | 12               | -                   |
| DEDEDO           | 3- 3-76           |            | 7-19-76    | 8                | -                   |
| PEREZ            |                   | 7- 6-76    | 4-13-77    | 22               | 0_                  |
| MT               | 12- 2-75          | 7- 6-76    | 4-13-77    | 20               | $9^1$               |
| AP               |                   | 8-10-76    | 4-13-77    | 20               | 0                   |
| CWR              |                   | 3-10-76    | 5-11-77    | 4                | 0                   |
| EAB              |                   | 7-12-76    | 5-1177     | 22               | 0_                  |
| NAS              |                   | 7-12-76    | 5-10-77    | 19               | 5 <sup>2</sup> 2    |
| WAB              |                   | 7-12-76    | 5-11-77    | 17               | $19^{3}$            |
| HILTON           | 12-11-75          |            | 7-26-76    | 4                | _                   |
| CONT 1           | 12 <b>-1</b> 1-75 |            | 7-26-76    | 3                | _                   |
| CONT 2           | 12-11-75          |            | 7-26-76    | 2                | -                   |
| REEF             | 12-11-75          |            | 12-11-75   | 2                | -                   |
| OKURA            | 12-11-75          |            | 7-12-76    | 4                | -                   |
|                  |                   |            |            |                  |                     |

<sup>1 -</sup> water level at sampling site to low for sampling but basin contained ponded water.

<sup>2 -</sup> high tide, seawater intursion.

<sup>3 -</sup> high tide, seawater intrusion, or volume flow to low for sampling.

Table Parameters analyzed during the study.

PARAMETER

METHOD

SOURCE

| MBAS Total Coliform Fecal Coliform                                                             | Oil and Grease               | Nitrate-Nitrogen                         | Nitrite-Nitrogen                         | Total Phosphorus                             | Orthophosphorus                            | Chemical Oxygen Demand                 | Biochemical Oxygen Demand | Dissolved Oxygen              | Calcium Hardness                        | Hardness                | Sulfate              | Chloride                | Phenolpthalein Alkalinity | Total Alkalinity         | Settleable Solids                       | Volatile Suspended Solids | Volatile Solids                        | Total Dissolved Solids                  | Suspended Solids  | Total Solids (Residue) | Specific Conductance | Turbidity            | Temperature         | рH                     |
|------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------|-------------------------------|-----------------------------------------|-------------------------|----------------------|-------------------------|---------------------------|--------------------------|-----------------------------------------|---------------------------|----------------------------------------|-----------------------------------------|-------------------|------------------------|----------------------|----------------------|---------------------|------------------------|
| methylene blue method membrane filter membrane filter                                          | partition-gravimetric method | cadmium reduction                        | sulfanilamide diazotization              | persulfate digestion-ascorbic acid reduction | ascorbic acid reduction                    | dicromate-reflux method                | 5 day incubation at 20°C  | iodometric-azide modification | EDTA titrametric method                 | EDTA titrametric method | turbidimetric method | argentometric titration | potentiómetric titration  | potentiometric titration | Imhoff cone                             | ignition at 550°C         |                                        | total solids minus suspended solids     | glassfiber filter | evaporation at 105°C   | wheatstone bridge    | nephelometric method | mercury thermometer | glass electrode method |
| L. Wang, Journal of American Water Work<br>Association<br>Standard Methods<br>Standard Methods | Standard Methods             | A Practical Method for Seawater Analysis | A Practical Method for Seawater Analysis | Standard Methods                             | A Practical Handbook for Seawater Analysis | J. S. Jeris, Water & Water Engineering | =                         | = =                           | ======================================= | =                       | =                    | =                       | = =                       | =                        | ======================================= | =                         | = ==================================== | ======================================= | 77                | =                      | =                    | 3                    | 3                   | Standard Methods       |
| rican Water Work<br>Association                                                                |                              | Seawater Analysis                        | Seawater Analysis                        |                                              | r Seawater Analysis                        | ter Engineering                        |                           |                               |                                         | 12                      | !9                   |                         |                           |                          |                                         |                           |                                        |                                         |                   |                        |                      |                      |                     |                        |

Table 4. Mean, standard deviation, range, and number of samples for parameters measured.

|      | BARRIO                                                                                                                                                                                                                                                                                                                                                                                       | GADA (1e)                                                                                                                                                                              |                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BARF                                                                                                                                                              | (IGADA (le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>`</u>                                           |                                                                                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|
| ×ı   | S                                                                                                                                                                                                                                                                                                                                                                                            | Low                                                                                                                                                                                    | High                                                                                                                                    | z                                                                                                                                                                                                                             | ×ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ca .                                                                                                                                                              | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High                                               | z                                                                                     |
| 8.78 | .70                                                                                                                                                                                                                                                                                                                                                                                          | 7.15                                                                                                                                                                                   | 10.24                                                                                                                                   | 30                                                                                                                                                                                                                            | 8.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .72                                                                                                                                                               | 6.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.52                                               | 30                                                                                    |
| 29.4 | 2.0                                                                                                                                                                                                                                                                                                                                                                                          | 25.0                                                                                                                                                                                   | 33.2                                                                                                                                    | 31                                                                                                                                                                                                                            | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2                                                                                                                                                               | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.4                                               |                                                                                       |
| 5.3  | 4.9                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                    | 25                                                                                                                                      | 30                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ω<br>5                                                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125                                                |                                                                                       |
| 139  | 37.5                                                                                                                                                                                                                                                                                                                                                                                         | 88.0                                                                                                                                                                                   | 229                                                                                                                                     | 28                                                                                                                                                                                                                            | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58.2                                                                                                                                                              | 69.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 362                                                |                                                                                       |
| 55.3 | 16.4                                                                                                                                                                                                                                                                                                                                                                                         | 34.0                                                                                                                                                                                   | 85.5                                                                                                                                    | 29                                                                                                                                                                                                                            | 65.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23,8                                                                                                                                                              | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 148                                                |                                                                                       |
| 7.0  | 4.6                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                    | 22                                                                                                                                      | 27                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.4                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.2                                               |                                                                                       |
| 11.4 | 8.26                                                                                                                                                                                                                                                                                                                                                                                         | 5.70                                                                                                                                                                                   | 45.1                                                                                                                                    | 21                                                                                                                                                                                                                            | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.02                                                                                                                                                              | 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.6                                               |                                                                                       |
| 5.3  | 34                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                    | 8.0                                                                                                                                     | 21                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                |                                                                                       |
| 117  | 76                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                                                                                                                     | 343                                                                                                                                     | 20                                                                                                                                                                                                                            | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.5                                                                                                                                                              | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 656                                                |                                                                                       |
| 61   | 45                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                     | 173                                                                                                                                     | 11                                                                                                                                                                                                                            | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127                                                |                                                                                       |
| 11   | 10                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                                                                                                                                                                                    | 35                                                                                                                                      | 21                                                                                                                                                                                                                            | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108                                                                                                                                                               | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 434                                                |                                                                                       |
| 7.2  | 5.2                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                    | 19                                                                                                                                      | 18                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26                                                                                                                                                                | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98                                                 |                                                                                       |
| 106  | 80                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                     | 341                                                                                                                                     | 20                                                                                                                                                                                                                            | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81                                                                                                                                                                | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31/                                                |                                                                                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                                                                         | 0                                                                                                                                                                                                                             | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.4                                                                                                                                                              | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.0                                               |                                                                                       |
| 7.73 | 2.77                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                   | 13.2                                                                                                                                    | 27                                                                                                                                                                                                                            | 6.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.22                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.08                                              |                                                                                       |
| 2.86 | 3,15                                                                                                                                                                                                                                                                                                                                                                                         | 0.42                                                                                                                                                                                   | 13.9                                                                                                                                    | 17                                                                                                                                                                                                                            | 3.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.47                                                                                                                                                              | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.2                                               |                                                                                       |
| 21   | 14                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                    | 15                                                                                                                                      | 22                                                                                                                                                                                                                            | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41                                                                                                                                                                | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 192                                                |                                                                                       |
| .004 | .010                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                   | .050                                                                                                                                    | 27                                                                                                                                                                                                                            | .005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .011                                                                                                                                                              | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .051                                               |                                                                                       |
| .068 | .109                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                   | . 602                                                                                                                                   | 34                                                                                                                                                                                                                            | .071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 089                                                                                                                                                             | *.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .341                                               |                                                                                       |
| .120 | .082                                                                                                                                                                                                                                                                                                                                                                                         | .038                                                                                                                                                                                   | . 297                                                                                                                                   | 00                                                                                                                                                                                                                            | .096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .039                                                                                                                                                              | .047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .167                                               |                                                                                       |
| .038 | .020                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                   | . 082                                                                                                                                   | <u>ئ</u>                                                                                                                                                                                                                      | , 044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .054                                                                                                                                                              | .007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .316                                               |                                                                                       |
| .178 | .117                                                                                                                                                                                                                                                                                                                                                                                         | .075                                                                                                                                                                                   | .431                                                                                                                                    | 7                                                                                                                                                                                                                             | .379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 507                                                                                                                                                             | . 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.63                                               |                                                                                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                              | <1.0                                                                                                                                                                                   | 2.0                                                                                                                                     | Ь                                                                                                                                                                                                                             | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.8                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.3                                               |                                                                                       |
|      | 9.63                                                                                                                                                                                                                                                                                                                                                                                         | 67.2                                                                                                                                                                                   | 86.0                                                                                                                                    | ديا                                                                                                                                                                                                                           | 73.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.3                                                                                                                                                              | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91,4                                               |                                                                                       |
|      | 7.07                                                                                                                                                                                                                                                                                                                                                                                         | 71.0                                                                                                                                                                                   | 81.0                                                                                                                                    | 2                                                                                                                                                                                                                             | 63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.7                                                                                                                                                              | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84.0                                               |                                                                                       |
|      | 3,959                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                      | 11,000                                                                                                                                  | 9                                                                                                                                                                                                                             | 2,272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,683                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <10,000                                            |                                                                                       |
|      | 407                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                      | 1,470                                                                                                                                   | 12                                                                                                                                                                                                                            | 3,445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.757                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20,000                                             |                                                                                       |
|      | \$\bar{x}\$  8.78  29.4  5.3  139  55.3  7.0  11.4  5.3  117  7.2  106  21.86  21  004  .068  .120  .088  .120  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088  .170  .088 | S<br>2.0<br>4.9<br>37.5<br>16.4<br>6.6<br>8.2<br>34<br>76<br>4.5<br>10<br>5.2<br>80<br>2.7<br>3.1<br>114<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | BARRIGADA  S  1.70 2.0 4.9 37.5 8.26 8.26 8.26 8.26 8.26 10 5.2 80 5.2 80 110 109 109 109 109 117 2.77 3.15 14 9.63 9.63 9.63 9.63 9.63 | BARRIGADA (1e)  S Low  S Low  7.15 2.0 25.0 4.9 1.0 37.5 88.0 16.4 34.0 4.6 0.0 8.26 5.70 34 20 76 27 45 15 10 1.4 5.2 1.5 80 13 2.77 1.00 3.15 0.42 1.4 0.0 0.00 0.117 0.03 0.03 0.117 0.03 0.05 9.63 67.2 7.07 71.0 3,959 0 | BARRIGADA (1e)  S Low High  1.70 7.15 10.24 2.00 25.0 33.2 4.9 1.0 25 37.5 88.0 229 16.4 34.0 85.5 4.6 0.0 22 8.26 5.70 45.1 34 0.0 8.0 76 27 343 10 1.4 35 5.2 1.5 173 110 1.4 35 5.2 1.5 19 80 13 341  2.77 1.00 13.2 3.15 0.42 13.9 14 0.0 51 0.00 .602 0.082 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 0.020 .038 .297 | BARRIGADA (1e)  S Low High N  1.70 7.15 10.24 30 22.0 25.0 33.2 31 29 24.6 20.0 25 29 28 14.0 20.0 22 27 4.6 20.0 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 | BARRIGADA (1e)         High         N         X         S           Low         High         N         X         S           2.0         7.15         10.24         30         8.54         .7           2.0         25.0         33.2         31         29.1         2.2           4.9         1.0         25         30         20         30         30           37.5         88.0         229         28         140         58.2         29         65.8         23.8           4.6         0.0         22         27         4.0         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0         4.4         4.0 | BARRIGADA (1e)  S Low High N \$\overline{X}\$  2.0 | BARRIGADA (1e)  S  LOV  H18h  N  \begin{array}{ c c c c c c c c c c c c c c c c c c c |

Table 5. Mean, standard deviation, range, and number of samples for parameters measured.

| 100 mi     | 100 車   |      | HARDNESS, mg/l | •    |       |      |       | NO3-N, mg/1 |      |      |      |      |      |     |     |     |     |     |            |      |     |      | Sp-COND umho/cm |     |      |      |       |                        |
|------------|---------|------|----------------|------|-------|------|-------|-------------|------|------|------|------|------|-----|-----|-----|-----|-----|------------|------|-----|------|-----------------|-----|------|------|-------|------------------------|
| 1 9,035 9, | 19,454  | 54.0 | 60.0           | 4.3  | . 386 | .050 | .127  | .110        | .008 | 24   | 2.90 | 4.79 | 16.6 | 120 | 5,5 | 9.9 | 51  | 129 | î          | 11.8 | 0.3 | 53.4 | 125             | 23  | 27.3 | 7.74 | ×ı    |                        |
| 9,468      | 36,886  | 31.1 | 24.2           | 5.0  | . 230 | .039 | .059  | .100        | .009 | 13   | 1.94 | 2.40 | 11.0 | 800 | 4.9 | 8.0 | 25  | 86  |            | 8.52 | 0.8 | 16.2 | 53.0            | 39  | 1.6  | 0.54 | S     | BARRIGAL               |
| 100        | 80      | 32   | 34             | 0.0  | .057  | .000 | . 063 | <.001       | .000 | 0.40 | 0.05 | 1.51 | 2.2  | 32  | 1.0 | 1.0 | 13  | 49  | 0.0        | 4.40 | 0.0 | 35.6 | 70.8            | 1.4 | 25.4 | 6.79 | Low   | BARRIGADA HEIGHTS (B2d |
| 25,000 1   | 120,000 | 76   | 82             | 12.6 | . 665 | .190 | .245  | .325        | .030 | 46   | 8.63 | 7.82 | 31.5 | 386 | 19  | 25  | 96  | 388 | ·.1        | 29.5 | 3.2 | 103  | 249             | 200 | 33.2 | 8.90 | High  | (B2d)                  |
| 13         | 13      | 2    | w              | Ç,   | 9     | 32   | 00    | 30          | 30   | 20   | 16   | 24   | S    | 20  | 16  | 19  | 11  | 20  | 17         | 20   | 26  | 30   | 28              | 28  | 30   | 30   | z     |                        |
| 171        |         |      | 36.0           | 6.8  | .169  | .015 | .054  | .051        | -    |      |      |      |      |     |     |     |     |     |            |      |     |      | 97.9            |     |      |      | ×ı    |                        |
| 141        | 6,056   |      | 11.3           | 9.7  | .115  | .026 | .028  | .080        | .006 | 11   | 2.35 | 3.21 |      | 35  | 3.S | 5.0 | 32  | 64  |            | 4.90 | 5.5 | 5.90 | 29.1            | 24  | 2.0  | 0.64 | S Low | BARRIGAL               |
| 0          | 0       |      | 28.0           | <1.0 | .077  | .000 | .019  | .000        | .000 | 0.70 | 0.32 | 4.50 |      | 2.9 | 1.2 | 1.9 | 1.7 | 14  | 0.0        | . 10 | 0.0 | 33.1 | 57.9            | 1.4 | 25.6 | 7.13 | Low   | A HEIGHTS              |
| 427        | 20,000  | 44.0 | 44.0           | 13.7 | . 396 | .143 | .092  | .315        | .022 | 44   | 8.18 | 16.3 |      | 122 | 14  | 20  | 82  | 320 | <u>^.1</u> | 17.5 | 22  | 56.8 | 163             | 113 | 32.7 | 9.60 | High  | (B2w)                  |

Table 6. Mean, standard deviation, range, and number of samples for parameters measured.

BARRIGADA HEIGHTS (B3)

LATTE HEIGHTS (L2)

| HARDNESS, mg/1 Ca HARDNESS, mg/1 TOTAL COLIFORM COL./100 cm FECAL COLIFORM COL./100 cm | SO <sub>4</sub> , mg/1 | PO4-P, mg/l | T-P, $mg/1$ | NO3-N, mg/1 | NO <sub>2</sub> -N, mg/1 | COD, mg/1 | BOD, mg/l | DO, mg/1 | OIL + GREASE, mg/1 | TDS, mg/l | VSS, mg/1 | SS, mg/1 | VS, mg/1 | TS, mg/1 | Settleable, ml/l | CL, mg/l | PHEN. ALK, mg/1 | TOTAL ALK, mg/l | Sp-COND umho/cm | TURB., NTU | TEMP., °C | РН    |    |
|----------------------------------------------------------------------------------------|------------------------|-------------|-------------|-------------|--------------------------|-----------|-----------|----------|--------------------|-----------|-----------|----------|----------|----------|------------------|----------|-----------------|-----------------|-----------------|------------|-----------|-------|----|
| 36<br>36<br>140<br>615                                                                 | 0.8                    | .017        | .073        | .079        | .002                     | 13        | 2.00      | 8.42     |                    | 90.4      | 8.0       | 13.8     | 37       | 102      | <b>^.1</b>       | 5.64     | 4.8             | 46.4            | 93.1            | 16         | 29.6      | 8.65  | ×ı |
| 275<br>963                                                                             | 0.7                    | . 033       | . 087       | .115        | . 002                    | 9.1       | 1.24      | 2,30     |                    | 43.6      | 8.7       | 13.1     | 42       | 50       |                  | 2.25     | 5.5             | 10.0            | 26.2            | 22         | 2.4       | 0.65  | s  |
| 00                                                                                     | <1.0                   | .000        | .029        | .000        | .000                     | 1.6       | 0.47      | 5.06     |                    | 31.4      | 2.2       | 2.0      | 6.0      | 37       | 0.0              | 2.40     | 0.0             | 31.3            | 57.0            | 2.3        | 26.0      | 6.96  |    |
| 760<br>2,320                                                                           | 1.2                    | .127        | .173        | .548        | .008                     | 38        | 76.57     | 14.6     |                    | 181       | 32.3      | 43.3     | 118      | 187      | <u>^.1</u>       | 9.90     | 18.0            | 75.9            | 174             | 00<br>De   | 33.7      | 9.90  | l) |
| 671+                                                                                   | · ω                    | 25          | w           | 26          | 24                       | 14        | 11        | 18       | 0                  | 12        | 11        | 14       | 6        | 12       | 14               | 14       | 22              | 24              | 23              | 24         | 25        | 24    | Z  |
| 3/<br>34<br>1,655<br>4,104                                                             | 1.9                    | .031        | .144        | .075        | .002                     | 18        | 3.28      | 10.5     | 7.9                | 71.2      | 8.2       | 11.8     | 47       | 89       | î.               | 8.12     | 12.1            | 44.1            | 104             | 11         | 32.7      | 9.22  | ×ı |
| 3,4 <b>93</b><br>5,986                                                                 | 1.1                    |             |             |             |                          |           |           |          |                    |           |           |          |          |          |                  |          |                 |                 |                 |            |           |       | s  |
| O W                                                                                    | 1.1                    | .000        | .081        | .000        | :000                     | 3.7       | 0.16      | 6.47     |                    | 14.2      | 2.8       | 2.8      | 13       | 17       |                  | 1.20     | 0.0             | 34.1            | 55.6            | 0.8        | 26.9      | 6.80  |    |
| 7,900<br>15,200                                                                        | 2.7                    | . 188       | .211        | .520        | .033                     | 60        | 7,08      | 14.8     |                    | 179       | 17.3      | 24.7     | 76       | 191      |                  | 33.7     | 28.0            | 57.3            | 246             | 78         | 40.0      | 10.20 |    |

Table 7. Mean, standard deviation, range, and number of samples for parameters measured.

|                             | <1       | PEREZ ACRES |       | :         | :  | <b>:</b> 1  | МАН     | MARIANA TERRAC | řť        |    |
|-----------------------------|----------|-------------|-------|-----------|----|-------------|---------|----------------|-----------|----|
|                             | >        | U           | Mort  | H1gh      | z  | ×           | S Low   | Low            | High      | z  |
| PH                          | 9.20     |             | 8.25  | 10.35     | 20 | 7,47        | 0.43    | 6.60           | 8.40      | 18 |
| TEMP., C                    | 29.9     |             | 25.5  | 34.4      | 21 | 28.7        | 1.9     | 27.9           |           | 19 |
| TURB., NTU                  | 21       |             | 5.9   | 70        | 19 | 10          | 7.9     | 1.4            |           | 18 |
| Sp-COND umho/cm             | 94.2     |             | 52.0  | 146       | 20 | 286         | 174     | 73.9           |           | 17 |
| TOTAL ALK, mg/l             | 33.1     |             | 27.8  | 70.2      | 22 | 131         | 82.5    | 32.1           |           | 28 |
| PHEN ALK, mg/l              | 8.2      |             | 0.5   | 22        | 22 | 0.16        | 0.6     | 0.0            |           | 19 |
| CL, mg/l                    | 7.77     |             | 0.80  | 15.5      | 21 | 16.2        | 9.13    | 4.90           |           | 19 |
| Settleable, ml/l            | <u>^</u> |             | 0.0   | <b>1.</b> | 21 | . 55        | . 45    | 0.0            |           | 16 |
| TS, mg/1                    | 210      |             | 52    | 836       | 21 | 439         | 665     | 123            |           | 18 |
| VS, mg/1                    | 61       |             | 31    | 89        | 10 | 79          | 30      | 37             |           | =  |
| SS, mg/1                    | 24.7     |             | 9.6   | 93.7      | 21 | 15.8        | 14.5    | 4.10           |           | 19 |
| VSS, mg/1                   | 11.6     |             | 5.5   | 21.2      | 17 | 10.1        | 7.9     | 3.5            |           | 16 |
| TDS, mg/                    | 185      |             | 38.0  | 782       | 21 | 185         | 183     | 38.0           |           | 21 |
| OIL + GREASE, mg/l          | 1.40     |             | 0.00  | 2.8       | 2  | 1.4         | 2.0     | 0.0            |           | 2  |
| DO, mg/1                    | 9.08     |             | 6.93  | 12.6      | 20 | 9.08        | 1.74    | 6.93           |           | 20 |
| BOD, mg/1                   | 3.44     |             | 1.13  | 8.63      | 17 | 4.25        | 2.42    | 0.93           |           | 16 |
| COD, mg/1                   | 22       |             | 4.9   | 40        | 21 | 19          | 8.6     | 4.2            |           | 19 |
| NO2-N, mg/1                 | .019     |             | .000  | . 206     | 17 | .048        | .074    | .000           |           | 17 |
| NO3-N, mg/l                 | .095     |             | <.001 | . 504     | 21 | . 349       | . 535   | <.001          |           | 19 |
| T-P, mg/1                   | .056     |             | .034  | .087      | 05 | .133        | .111    | . 060          |           | 7  |
| PO <sub>4</sub> -P mg/1     | .015     |             | . 000 | .073      | 21 | .049        | .074    | .000           |           | 20 |
| MBAS, mg/1                  | . 141    |             | .051  | .232      | Ý  | . 271       | .233    | .106           |           | 8  |
| SO4, mg/1                   | 1.6      |             | 1.0   | 2.6       | w  | 5.4         | 4.1     | 0.1            |           | w  |
| HARDNESS, mg/1              | 1£       |             | 29    | 34        | L  | 243         | 21.9    | 228            |           | 2  |
| Ca HAKDNESS, mg/l           | 27.5     |             | 27    | 28        | 2  | 255         |         |                |           | _  |
| TOTAL COLIFORM COL./100 cm  | 3,112    | 3,792       | 0     | 10,000    | 14 | 32,195      | 69,421  | o              | 246,000   | 12 |
| FECAL COLIFORM COL. /100 cm | 393      |             | 0     | 710       | 12 | 190,541 623 | 623,450 | 800            | 2,170,000 | 12 |
|                             |          |             |       |           |    |             |         |                |           |    |

Table 8. Mean, standard deviation, range, and number of samples for parameters measured.

| nn 1,417 1,726 0 | cm 21,896 32,507 0 | 62 27 43 | 71 22 46 | 2.0 1.3 <1.0 | 3, 17 3. 27 .677 | .384 .511 .018 | 1.00 2.70 | 1 90 3 70 317 | .067 .088 <.001 | .003 .003 .000 | 116 153 8.0 | 30.48 39.55 3.73 | 4.97 3.39 0.00 | 33.2 22.4 13.1 | 220 130 40 | 9.8 7.4 3.5 | 7.5 3.5 | 97 74 21 | 245 160 47 | <.1 0.0 | 14.4 6.10 5.00 | 1.4 3.2 0.00 | 62.4 28.5 38.0 | 175 50.0 88.0 | 17 20 3.8 | 31.6 3.1 24.5 | 7.90 .72 6.70 |      | AIRPORT ROAD   |
|------------------|--------------------|----------|----------|--------------|------------------|----------------|-----------|---------------|-----------------|----------------|-------------|------------------|----------------|----------------|------------|-------------|---------|----------|------------|---------|----------------|--------------|----------------|---------------|-----------|---------------|---------------|------|----------------|
| 5,500            | 100,000            | 81       | 90       | 3.7          | 12.21            | 3.73           | 0.20      | 3C 08         | . 346           | .010           | 693         | >160             | 14.10          | 64.9           | 486        | 35.3        | 35      | 286      | 627        | ·1      | 25.5           | 35.3         | 148            | 261           | 82        | 35.7          | 8,98          | High |                |
| 15               | 14                 | 2        | ىي       | S            | 11               |                |           |               | 18              |                | 18          | 16               | 17             | 6              | 17         | 17          | 18      | 10       | 17         | 18      | 17             | 19           | 19             | 17            | 16        | 18            | 18            | z    |                |
| 4,747            | 32,206             | 139      | 235      | 135          | .360             | 220,           | . 019     | 030           | 1.06            | .047           | 19          | 1.93             | 4.22           | 10.6           | 1,303      | 8.7         | 36.7    | 180      | 1,392      | ·.1     | 745            | 2.5          | 223            | 2,555         | 20        | 29.0          | 7.74          | × t  |                |
| 10,038           | 23,735             | 115      | 137      | 152          | . 297            | 210.           |           | 216           | .630            | .041           | 13          | 1.01             | 1.69           | 7.8            | 1,319      | 9.1         | 42.4    | 166      | 1,280      |         | 1,100          | 1.0          | 110            | 3,105         | 38        | 1.3           | 0.29          | s    | EAST           |
| 90               | 2,900              | 58       | 77       | 13.5         | . 061            | .003           |           | 216           | . 231           | . 002          | 3.2         | 0.58             | 1.10           | 2.5            | 40.6       | 1.8         | 2.4     | 51       | 89         | 0.0     | 2.60           | 1.5          | 19.5           | 66.0          | 1.4       | 26.9          | 7.20          | Low  | EAST AGANA BAY |
| 39,300           | 87,000             | 220      | 320      | 370          | 1.0/             | , 140,         |           | 058           | 2.34            | . 202          | 43          | 4.98             | 7.29           | 18.0           | 5,645      | 37.4        | 164     | 614      | 5,664      | 0.1     | 4,656          | 3.5          | 436            | 12,827        | 160       | 31.2          | 8.30          | High |                |
| 15               | 14                 | 2        | w        | v            | •                | 12             | 3         | œ             | 21              | 22             | 20          | 17               | 20             | w              | 20         | 18          | 20      | 10       | 20         | 20      | 20             | 19           | 19             | 19            | 19        | 20            | 19            | z    |                |

Table 9. Mean, standard deviation, range, and number of samples for parameters measured.

| Sp-COND, umho/cm 1,928  TOTAL ALK, mg/1 246  PHEN. ALK, mg/1 0.0  CL, mg/1 448  Settleable, ml/1 1,371  VS, mg/1 206  SS, mg/1 206  SS, mg/1 1,370  OIL + GREASE, mg/1 1,370  OIL + GREASE, mg/1 4.87  BOD, mg/1 4.87  BOD, mg/1 5.1  NO2-N, mg/1 0.54  COD, mg/1 5.1  NO2-N, mg/1 5.1  NO2-N, mg/1 5.1  SO4, mg/1 7.5  T-P, mg/1 0.002  NO3-P, mg/1 7.5  T-P, | pH<br>PH<br>TEMP. °C          | 7.02<br>27.4 | S<br>0.27<br>0.2 | NAS Low 6.38 27.2 | H1gh<br>7.55<br>28.0 | 15<br>16   | 7.95<br>27.5 | WEST<br>S<br>.38<br>1.0 | LOW 7.20 25.0 0.4 | High<br>8.50<br>28.2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|------------------|-------------------|----------------------|------------|--------------|-------------------------|-------------------|----------------------|
| 01/1<br>/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sp-COND, umho/cm              | 1,928        | 280              | 1,229             | 2,295                | 16         | 793          | 706<br>70 0             |                   | 17.0                 |
| )1<br>)1<br>)100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL ALK, mg/l PHEN ALK mg/l | 246<br>0.0   | 639              | 321               | 279                  | 15 15      | 137<br>1.1   | 79.0<br>2.4             | <u> </u>          |                      |
| )1<br>/1<br>/100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL, mg/l                      | 448          | 70.1             | 309               | 627                  | 16         | 217          | 532                     | _                 | 8                    |
| )1<br>1<br>100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Settleable, ml/1              | 0.0          |                  |                   |                      | 13         | <0.1         |                         | 0                 |                      |
| )1<br>1<br>100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TS, mg/1                      | 1,371        | 420              | 733               | 2,468                | 16         | 738          | 612                     | 66                |                      |
| )1<br>/1<br>/100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS, mg/1                      | 206          | 59               | 126               | 268                  | 7          | 116          | 90                      | 22                |                      |
| )1<br>)1<br>)1<br>)1<br>)1<br>)1<br>)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS, mg/1                      | 2.4          | 3.7              | 0.0               | 14.8                 | 15         | 19.4         | 36.0                    | ^                 | _                    |
| )1<br>)1<br>)1, /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VSS, mg/1                     | 1.9          | 3.5              | 0.0               | 13.9                 | 13         | 7.6          | 12.7                    | î.                | o                    |
| )1<br>01, /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TDS, mg/1                     | 1,370        | 420              | 730               | 2,467                | 16         | 675          | 611                     | 13.               | 0                    |
| 1<br>01. /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OIL + GREASE, mg/l            | · 7          | <b>,</b>         |                   |                      | : <u>-</u> | 1            | -                       | -                 | 3                    |
| 1<br>01. /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DO, mg/1                      | 4-87         | 0.60             | 3.96              | 5.68                 | 15         | 7.UZ<br>2.22 | 326                     | o                 | 7 6                  |
| 1<br>01- /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COD, mg/l                     | 5.1          | 6,3              | 0.0               | 18.1                 | 16         | 22           | 37                      | 0                 | 0                    |
| 1<br>01- /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO7-N, mg/1                   | .002         | .003             | .000              | .009                 |            | .020         | .025                    | ^                 | 001                  |
| )<br>1<br>01. /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $NO_3-N$ , $mg/1$             | 2.41*        | .116             | 2.14              | 2.51                 | 13         | 1.31         | 1.19                    |                   | .036                 |
| 01. /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T-P, mg/1                     | .009         | ,007             | .002              | .021                 | v          | .028         | .029                    |                   | .001                 |
| 1<br>01. /100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $PO_L-P$ , $mg/1$             | .010         | .008             | <.001             | .017                 | 19         | .019         | .019                    | ٨                 | .001                 |
| 1<br>01/100 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MBAS, mg/1                    | . 131        | .010             | .116              | .138                 | 4          | .172         | . 305                   |                   | .010                 |
| ng/1<br>ng/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SO <sub>4</sub> , mg/1        | 75           | 34               | 47                | 123                  | 4          | 158          | 90                      | 64                |                      |
| ng/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HARDNESS, mg/1                | 412          | 10.6             | 405               | 420                  | 2          | 124          | 20.8                    | 94                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ca HARDNESS, mg/1             | 300          | 14.1             | 290               | 310                  | 2          | 97.0         | 20.5                    | 77                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL COLIFORM COL./100 o     | ст 237       | 540              | 0                 | 1,460                | 12         | 37,800       | 74,417                  | 0                 |                      |
| FECAL COLIFORM COL./100 cm 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FECAL COLIFORM COL./100 o     | 6            | 9                | 0                 | 28                   | 12         | 4,112        |                         | 0                 |                      |

Six readings not included because exact concentration not determined (>.5 mg/l)

Table 10. Mean, standard deviation, range, and number of samples for parameters measured.

|                            |            | CAMP   | CAMP WATKINS ROAD | Ŭ          |      | 1      | TUMON BAY - FRESH WATER SEEPAGE | RESH WATER | SEEPAGE  |            |
|----------------------------|------------|--------|-------------------|------------|------|--------|---------------------------------|------------|----------|------------|
|                            | ×ı         | s      | Low               | High       | z    | ×ı     | S Low                           | Low        | High     | Z          |
|                            | 7 05       | 0.17   | 6 90              | 7.23       | w    | 7.01   | 0.13 6.90                       | 6.90       | 7.30     | 7          |
| TEMP: °C                   | 29.8       | 0,9    | 29.0              | 30.8       | w    | 27.3   | 0.6                             | 26.5       | 28.0     | 7          |
| TURB. NTU                  | 11         | 16     | 1.3               | 30         | w    | 0.21   | 0.06                            | 0.12       | 0.30     | 7          |
| Sp-COND, umbo/cm           | 737        | 334    | 356               | 976        | w    | 6,130  | 2,926 2                         | ,528       | 9,665    | ٠,         |
| TOTAL ALK, mg/l            | 190        | 84.9   | 96.0              | 260        | ىيا  | 262    | 16.9                            | 232        | 2//      | . ~        |
| PHEN. ALK, mg/l            | 0          |        |                   | 0          | L.   |        | •                               |            | 3        | J ~        |
| CL, mg/l                   | 62.3       | 61.3   | 13.9              | 132        | ىي   |        | 1,029                           | 357        | 3,119    | 1 ~        |
| Settleable, mg/l           | <u>`.1</u> |        |                   | <b>,</b> 1 | ىي   |        | ·                               |            |          | <b>,</b>   |
| TS, mg/1                   | 1,180      |        |                   |            | , μ  |        | 7,080 I,011                     | ,011       | 0+140    | > ~        |
| VS, mg/l                   |            |        |                   |            | 0    |        | •                               | •          | נ        | 4 0        |
| SS, mg/l                   | 10.6       | 8.6    | 5.5               | 20.5       | نب د |        | 1.5                             | 0.2        |          | - ~        |
| VSS, mg/1                  | 5.9        | 4.0    | 3.2               | 10.5       | ·w   | 1.6    |                                 |            | 6 169    | u F        |
| TDS, mg/1                  | 1,174      |        |                   | •          | · -  | 4,19/  | 2,086 1                         | ,000       | 747      | > ~        |
| OIL + GREASE, mg/l         | 15.6       | 6.3    | 8.5               | 20.3       | نب ا | ,<br>, | 3                               | ,          |          | <b>4</b> C |
| DO, mg/1                   | 3.07       | 1.21   | 1.82              | 4,23       | w    | 3.00   | 0.43                            | , u        |          | 1 ~        |
| BOD, mg/l                  | 4.49       | 0.72   | 3.98              | 5,00       | 2    | 0.78   | 0.4/                            | 0.20       | 1.4      | 1 ~        |
| COD, mg/l                  | 15         | 17     | 2.4               | 34         | w    | 14     | 15                              | 1.0        | <b>4</b> | ; ~        |
| NO2-N, mg/1                | .004       | . 004  | <.001             | .007       | w    | .006   | .016                            | 6 .000     | . 054    | . 5        |
| NO3-N, mg./1               | . 102      | .063   | .031              | .150       | ىيا  | 3,39±  |                                 |            |          | • •        |
| T-P, $mg/1$                | .159       | .078   | .071              | . 221      | w    | .015   | <u>.</u>                        | 2          | ,        | ;<br>-     |
| POP. mg/1                  | .087       | .043   | .056              | ,136       | w    | .044   | . 103                           | .003       |          | , <b>:</b> |
| MBAS, mg/l                 | . 296      | .037   | .270              | .323       | 2    |        |                                 |            |          | ۔ د        |
| SO, mg/1                   |            |        |                   |            | 0    | 51.9   |                                 |            |          | ۰ ۱        |
| HARDNESS, mg/l             |            | 108    | 115               | 330        | ىيا  |        |                                 |            |          | o c        |
| Ca HARDNESS, mg/1          | 190        | 120    | 105               | 275        | . №  |        |                                 |            |          | > 5        |
| TOTAL COLIFORM COL./100 cm |            | 48,078 | 7,000             | 68,000     | ٠,   |        |                                 |            |          | 9 0        |
| FECAL COLIFORM COL./100 cm |            | 354    | 200               | 700        | 2    |        |                                 |            |          | c          |

: 14 readings not included because exact concentration not determined (>.5 mg/l).

Table 11. Mean, standard deviation, range, and number of samples for parameters measured.

LATTE HEIGHTS (L3)

DEDEDO

| MBAS, mg/1 SO <sub>4</sub> , mg/1 SO <sub>4</sub> , mg/1 HAKDNESS, mg/1 CA HARDNESS, mg/1 TOTAL COLIFORM COL./100 cm FECAL COLIFORM COL./100 cm | T-F, mg/1 | $NO_{3}^{-}N$ , $mg/1$ | NO <sub>7</sub> -N, mg/1 | COD, mg/1  | 80D, mg/1 | DO, mg/1 | OIL + GREASE, mg/1 | TDS, mg/1 | VSS, mg/l | SS, mg/1 | VS, mg/l | TS, mg/l | Settleable, mg/l | CL, mg/1 | PHEN. ALK, mg/1 | TOTAL ALK, mg/1 | Sp-COND, umho/cm | TURB. NTU | TEMP., "C | Hq   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|--------------------------|------------|-----------|----------|--------------------|-----------|-----------|----------|----------|----------|------------------|----------|-----------------|-----------------|------------------|-----------|-----------|------|------|
|                                                                                                                                                 | 000       | .0641                  | .007                     | 23         | 0.40      | 8.43     |                    | 44.2      |           | 13.8     |          | 58       |                  | 3.9      | 9.92            | 39.9            | 90.7             | 17        | 31.1      | 9.08 | ×ı   |
| . 0                                                                                                                                             | 931       | .093                   | .015                     |            |           | 2.47     |                    |           |           |          |          |          |                  |          | 6.55            | 4.2             | 29.5             | 23        | 2.4       | 0.69 | s    |
|                                                                                                                                                 | 800       | .000                   | . 000                    |            |           | 5.64     |                    |           |           |          |          |          |                  |          | 0.00            | 32.8            | 55.6             | 2.4       | 27.0      | 7.90 | Low  |
| . 032                                                                                                                                           | 223       | >.500                  | .046                     |            |           | 11.51    |                    |           |           |          |          |          |                  |          | 17.7            | 46.5            | 16.9             | 78        | 34,1      | 9.95 | High |
| 000000                                                                                                                                          | - 0       | 11                     | 11                       | _          | -سو       | 4        | 0                  |           | 0         |          | 0        | _        | 0                | ۳        | 9               | 10              | 10               | 11        | 10        | 10   | z    |
|                                                                                                                                                 | 2         | . 097                  | .015                     | 13         | 4.92      | 8,04     |                    | 57.8      |           | 8.2      |          | 66       |                  | 2.9      | 9.16            | 39.8            | 75.8             | 4.9       | 31.2      | 9.21 | ×ı   |
|                                                                                                                                                 | 2         | .083                   | .038                     |            |           | 0.82     |                    |           |           |          |          |          |                  |          | 4.48            | 5.73            | 11.7             | 3.9       | 2.4       | 0.70 | 1    |
| . 000                                                                                                                                           | 3         | .000                   | .000                     |            |           | 6.75     |                    |           |           |          |          |          |                  |          | 0.00            | 32.7            | 63.7             | 2.3       | 26.4      | 7.60 | Low  |
| .025                                                                                                                                            | 2         | . 203                  | .102                     |            |           | 9.33     |                    |           |           |          |          |          |                  |          | 12.6            | 47.4            | 99.7.            | 13        | 33.0      | 9.90 | High |
| 000000                                                                                                                                          | 0         | 7                      | 7                        | <b>-</b> , | _         | 2        | 0                  | _         | 0         | _        |          | -        | 0                | _        | œ               | œ               | œ                | œ         | œ         | 80   | Z    |

1. One reading not included because exact concentration not determined (>.5 mg/1).

Table 12. Comparison of Guam urban runoff to urban runoff of other communities, other Guam waters and the Guam Water Quality Standards. All parameters are mean values expressed in mg/l unless otherwise noted.

| =                    | Amblent | Amhient                   |          | 75   |      | 5            |      |      |         |      |          | •    |            |         |        | Drinking water resource-                       |
|----------------------|---------|---------------------------|----------|------|------|--------------|------|------|---------|------|----------|------|------------|---------|--------|------------------------------------------------|
|                      |         |                           |          |      |      |              |      |      | ambient | •    |          | ī    | content    | ambient | amb    |                                                |
| =                    |         |                           |          |      |      |              |      | ŕ    | over    | •    |          | tion | saturation | E 05    | from   |                                                |
| :                    |         |                           |          |      |      |              |      | Đ    | 101000  |      | ,        |      | ) •<br>• \ |         |        | COASTAL WATERS A                               |
| sheen or<br>by order |         | 230                       |          | . 75 |      | . 05         |      |      | 5%      |      | JA.      |      | 75%        |         | J      | Эростой на |
| as visible           | 0       | 1                         |          |      | 10   |              |      |      |         |      | <b>⊢</b> |      |            |         |        | Drinking water la                              |
| Decediable           |         | 7                         |          |      |      |              |      |      |         |      |          |      |            |         |        | GUAM WATER QUALITY STANDARDS (1975)            |
|                      | 40,000  | 120,000                   |          | 0.5  |      | 0.2          |      |      | 130     |      |          | 29   | 3.0        |         | 6.0    | Washington, D.C.                               |
|                      | 10      | 5,000                     | 36       | . 36 |      |              |      | 89   | 84      |      |          | 42   | 8.0        |         | 6.8    | Tulsa                                          |
|                      |         | 25,000                    |          |      |      |              |      |      |         |      |          | 96   |            |         |        | Detroit                                        |
|                      | 10,900  | 58,000                    |          |      |      | 0.3          |      |      | Çī      |      | 30       | 20   | 1.0        |         | 5.3    | Cincinnati                                     |
|                      |         |                           |          | 4.0  |      | 9.1          |      |      |         |      |          |      | 40         |         | 6.8    | Chicago                                        |
|                      | 82,000  | 1,200,000                 |          | 84   |      | 2.9          |      |      | 1280    |      |          |      |            |         |        | Ann Arbor                                      |
|                      | 0,200   | 103,000                   | 417      | 0    |      | .1.          |      | 871  | 21      |      | 15       |      | 1.10       | 7.45    | 7.2    | Kalihi stream                                  |
|                      | 1,000   | 31,000                    |          |      |      | . 60         |      |      | 124     | 188  | 52       |      |            | 8.0     | 7.2    | Manoa stream'                                  |
|                      | 14,290  | 594,000                   |          | .05  |      | ò            | .10  |      |         |      |          | 25   | 10.4       |         |        | Street refuse"                                 |
|                      |         |                           |          |      |      |              |      |      |         |      |          |      |            |         |        | HAWAII                                         |
|                      |         |                           | 1,120    |      | 2.14 |              |      |      |         |      | .19      |      |            |         | 7.0    | Groundwater-well A-13 <sup>3</sup>             |
|                      |         |                           | 400      |      |      |              |      |      |         |      | .15      |      |            |         | 7.5    | Groundwater-well D-12 <sup>3</sup>             |
|                      |         |                           |          | 12.6 |      | 3.10         | 1.12 | 794  | 40      | 825  |          | 122  | 26         | 2.5     | 7.2    | Sewage treated-Tipalao Plant'                  |
|                      |         |                           |          | 20.1 | 1.92 | 3.75         | 1.15 | 1023 | 1444    | 2468 |          | 1132 | 2.34       | <1.0    | 7.2    | Sewage-raw Tipalao Plant <sup>2</sup>          |
|                      | 1,544   |                           |          |      |      | .076         |      | 250  | œ       | 242  |          |      |            | 9.7     | 7.6    | Lasa Fua River $(4-12-77)^{\frac{7}{2}}$       |
|                      | 192     |                           |          |      |      | .081         |      | 237  | 7       | 244  |          |      |            | 9.0     | 8.2    | Geus River $(4-12-77)^2$                       |
| 16.6                 | 14,300  | 145,000                   | 218      |      | .095 | .165         | .06  |      |         | 129  | 29       |      | 5.30       |         |        | Barrigada Heights storm drain (wet weather)    |
|                      | ,,000   | 3,030                     | 200      |      |      | . <u>L</u> 3 | .048 | 211  | 16      | 439  | 10       | 19   | 4.25       | 4.53    | 7.5    | Mariana Terrace ponding basin                  |
|                      | 7 000   | 3 9 5 2                   | 1,920    |      | 14.4 | .010         | oro  | 13/0 | 2.4     | 13/1 | 1.1      | 5.0  | . 54       | 4.89    | 7.0    | NAS storm drain                                |
| 0./-03               | 1,140   | 17,500                    | 1,065    |      |      | . 510        | .118 | 846  | 17      | 865  | 17       | 43   | 9.65       | 4.82    | 7.7    | Commercial area storm drains                   |
| 1.4-27               | 215     | 900                       | 115      |      | . 08 | .10          | .080 | 110  | 18      | 130  | 16       | 21   | 2.98       | 7.97    | 8.7    | Ponding basins                                 |
|                      | _       | -                         |          |      |      | :            | ,    |      |         |      | (a.c.)   | 0.00 | 500        | 130     | 77     | GUAX                                           |
| OIL &                | F C     | T C F C F C ml cts/100 ml | COND.    | Ħ    | Z Z  | 4            | POP  | 100  | 2       | ,    | OT T     | 200  | 3          | 3       | )<br>C |                                                |
|                      |         |                           | SPECIFIC | ,,   |      |              |      |      |         |      |          |      |            |         |        |                                                |

<sup>1</sup>Geometric mean
2Source: Guam Environment Protection Agency
3Results of 4/71 sampling: Guam Public Utilities Agency
4Georce: Chun, Young and Anderson (1972)
5Source: Watsushita and Young (1973)
5Extracted from Matœushita and Young (1973)
7Arithmetic mean of 30 day period

Table 13. Results of sequential sampling at Barrigada Heights ponding basin (B2D). December 15, 1975. All concentrations in mg/1 unless otherwise noted.

| 0645 | 051.5<br>0600 | 0430  | 0345 | 0300  | 0215 | 0130  | 0045 | 0000  | 2315 | 2230  | 2145 | 2100  | 2015  | 1930  | 1845 | 1800  | 1715 | 1630  | 1545 | 1500  | 1400        | Time                           |
|------|---------------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|-------|-------|------|-------|------|-------|------|-------|-------------|--------------------------------|
|      | 7.95          | 7.95  |      | 7.95  |      | 8.03  |      | 8.03  |      | 8.03  |      | 8.08  |       | 8.13  |      | 8.18  |      | 8.30  |      | 8.25  |             | рH                             |
|      | 8.5           | 9.8   |      | 10.5  |      | 10.5  |      | 11.0  |      | 11.0  |      | 11.5  |       | 12    |      | 14.0  |      | 14.5  |      | 15.5  |             | Turb.<br>(NTU)                 |
|      | 179.3         | 165.5 |      | 152.3 |      | 151.7 |      | 154.0 |      | 155.8 |      | 149.4 |       | 147.2 |      | 147.2 |      | 138.0 |      | 128.8 |             | Specific Conductance (umho/cm) |
|      | 50.9          | 47.3  |      | 43.3  |      | 43.4  |      | 43.5  |      | 45.0  |      | 44.0  |       | 41.5  |      | 38.2  |      | 36.0  |      | 35.5  |             | ALK.                           |
|      | 0.0           | 0.0   | ,    | 0.0   |      | 0.0   |      | 0.0   |      | 0.0   |      | 0.0   |       | 0.0   |      | 0.0   |      | .40   |      | .45   |             | P.ALK.                         |
| .003 | . 002         |       | .001 |       | .002 |       | .001 |       | .001 |       | .001 |       | <.001 |       | .001 |       | .001 |       | .003 |       | .001        | NO <sub>2</sub> -N             |
| .141 | .142          |       | .033 |       | .140 |       | .029 |       | .025 |       | .023 |       | .029  |       | .096 |       | .022 |       | .125 |       | 0.43        | NO3-N                          |
|      |               |       |      |       |      |       |      |       |      |       |      |       |       |       |      |       |      |       |      | ď     | Terminating | Rainfall<br>Activity           |

Table 14. Results sequential sampling at Latte Heights Estates. January 3, 1977. All concentrations in mg/l unless otherwise noted.

| 0900 | 0855 | 0845 | 0840        | 0835 | 0830     | 0825 | 0820 | 0815 | 0800 | Time                                 |
|------|------|------|-------------|------|----------|------|------|------|------|--------------------------------------|
| 8.10 | 8.18 | 8.30 | 8.18        |      | 7.94     | 7.96 | 7.89 |      |      | рĦ                                   |
| 166  | 154  | 154  | 178         |      | 325      | 333  | 362  |      |      | Specific<br>Conductance<br>(umho/cm) |
| 33.7 | 30.7 | 30.0 | 30.0        |      | 40.0     | 42.1 | 47.8 |      |      | ALK.                                 |
| 0.0  | 0.0  | 0.0  | 0.0         |      | 0.0      | 0.0  | 0.0  |      |      | P.ALK.                               |
| .050 | .040 | .036 | .058        | .084 |          | .093 |      | .109 |      | P04-P                                |
| 0.00 | 0.00 | .001 | <.001       | 0.00 |          | 0.00 | :002 |      |      | NO <sub>2</sub> -N                   |
| 0.00 | .005 | .005 | .009        | .106 |          | .014 | .027 |      |      | NO3-N                                |
|      |      |      | Terminating |      | Starting |      |      |      |      | Rainfall<br>Activity                 |

Table 15. Results of sequential sampling at Perez Acres on January 9, 1976. in  $\ensuremath{\text{mg/1}}$  unless otherwise noted. All concentrations

|                      | .006  | 0     | .026               | 5.5    | 18.0 | 70.2                                 | 2.0   | 9.38 | 1245 |
|----------------------|-------|-------|--------------------|--------|------|--------------------------------------|-------|------|------|
| Terminating '        | .007  | 0     | .033               | 4.0    | 15.5 | 77.6                                 | 3.6   | 9.65 | 1235 |
| Rain                 | .001  | .001  | .033               | 8.0    | 28.5 | 113                                  | 2.8   | 9.55 | 1230 |
|                      | .009  | .001  | .032               | 6.4    | 18.1 | 95.5                                 | 3.8   | 9.20 | 1215 |
| Terminating          | .011  | .004  | .026               | 2.7    | 15.4 | 78.4                                 | 2.8   | 9.20 | 1200 |
|                      | .053  | <.001 | .034               | 4.0    | 27.0 | 116                                  | 4.2   | 9.00 | 1157 |
| Rain                 | .415  | .001  | .066               | 3.7    | 73.7 | 251                                  | 5.7   | 8.68 | 1155 |
| Terminating          | <.001 | <.001 | .067               | 9.5    | 27.7 | 132                                  | 5.5   | 9.60 | 1140 |
|                      | .118  | 0     | .028               | 8.0    | 29.3 | 116                                  | 6.2   | 9.63 | 1125 |
|                      | .125  | 0     | .030               | 6.0    | 25.0 | 94.9                                 | 3.6   | 9.56 | 1105 |
| Raining              | .009  | .001  | .048               | 7.0    | 30.0 | 157                                  | 2.7   | 9.44 | 1100 |
| Rainfall<br>Activity | NO3-N | NO2-N | PO <sub>4</sub> -P | P.ALK. | ALK. | Specific<br>Conductance<br>(umho/cm) | Turb. | PH   | Time |

Table 16. Results of sequential sampling at Perez Acres on May 17, 1977. All concentrations in  $\mbox{mg/l}$  unless otherwise noted.

| 1150       | 1145       | 1140        | 1135  | 1130  | 1125       | 1124          | 1123 | 1122 | 1121 | 1120  | 1119  | 1118  | 1117  | 1116  |       |               |   | Time      |             |          |
|------------|------------|-------------|-------|-------|------------|---------------|------|------|------|-------|-------|-------|-------|-------|-------|---------------|---|-----------|-------------|----------|
|            |            |             |       |       |            |               |      |      |      |       |       |       |       |       |       | (Basin water) |   | рH        |             |          |
|            |            |             |       |       |            |               |      |      |      |       |       |       |       |       |       | er)           |   | (NTU)     | Turb.       |          |
|            |            |             | .64   |       |            |               |      | 126  |      | 123   |       | 132   |       |       |       | 135           |   | (umho/cm) | Conductance | Specific |
|            |            |             |       |       |            |               |      |      |      |       |       |       |       |       |       |               |   | ALK.      |             |          |
|            |            |             |       |       |            |               |      |      |      |       |       |       |       |       |       |               |   | P.ALK.    |             |          |
|            |            | .065        |       |       |            | .050          |      |      |      |       | .086  |       |       |       |       | .115          |   | T-P       |             |          |
| .051       | .055       |             |       |       | .031       | .039          | .040 | .042 | .053 | . 062 | .068  | .079  | .074  | .058  |       | 0             |   | P04-P     |             |          |
|            | <.001      | <.001       | <.001 | <.001 | .001       |               | ۸    |      | .001 |       | <.001 |       | <.001 | 0     | 0     |               |   | NO2-N     |             |          |
|            | .004       | .007        | .006  | .008  | .007       | .002          | .002 | .002 | .002 | .003  | .004  | . 006 | .012  | . 006 | . 008 | .002          |   | NO3-N     |             |          |
| of shower) | from start | (.20 inches |       |       | to drizzle | Rain Tapering |      | -    | . 4. |       |       |       |       |       |       | Start of Rain | İ | Activity  | Rainfall    |          |

142

Table 17. Mean, standard deviation, range, number of samples and FC:TC ratios for total and fecal coliform bacteria grouped according to type of runoff source.

| SAMPLING<br>LOCATIONS | TOTAL<br>SITES | Σ       | S       | LOW   | HIGH      | N  | FC:TC |
|-----------------------|----------------|---------|---------|-------|-----------|----|-------|
| Ponding Basins        | 7              |         |         |       |           |    | .57   |
| TC                    |                | 4,532   | 8,163   | 0     | 20,000    | 71 |       |
| FC                    |                | 2,567   | 3,428   | 0     | 25,000    | 73 |       |
| Marine Drive<br>Area  | 4              |         |         |       |           |    | .08   |
| TC                    |                | 32,350  | 43,448  | 0     | 253,000   | 40 |       |
| FC                    |                | 2,682   | 4,140   | 0     | 39,300    | 41 |       |
| Mariana Terrace       | 1              |         |         |       |           |    | 5.92  |
| TC                    |                | 32,195  | 69,421  | 0     | 246,000   | 12 |       |
| FC                    |                | 190,541 | 623,450 | 800   | 2,170,000 | 12 |       |
| NAS                   | 1              |         |         |       |           |    | .03   |
| TC                    |                | 237     | 540     | 0     | 1,460     | 12 |       |
| FC                    |                | 6       | 9       | 0     | 28        | 12 |       |
| B2d (wet<br>weather)  | 1              |         |         |       |           |    | .11   |
| TC                    |                | 188,300 | 182,352 | 1,000 | 640,000   | 12 |       |
| FC                    |                | 21,298  | 15,935  | 24    | 44,000    | 12 |       |

Table 18. Log normal frequency distributions of total and fecal coliform bacteria grouped according to runoff source residential (Ponding Basins) or Commercial (Marine Drive Storm Drains). Mariana Terrace, NAS, B2d (wet weather) presented individually for comparison.

|                   | % 0     | F TIME EXCE | FC:TC (of Geometri |        |  |  |  |
|-------------------|---------|-------------|--------------------|--------|--|--|--|
| SAMPLE LOCATION   | 10%     | 50%         | 90%                | Means) |  |  |  |
| Ponding Basins    |         |             |                    | .24    |  |  |  |
| TC                | 8,000   | 900         | 100                |        |  |  |  |
| FC                | 15,000  | 215         | 2.6                |        |  |  |  |
| Marine Drive Area |         |             |                    | .07    |  |  |  |
| TC                | 65,000  | 17,500      | 4,800              |        |  |  |  |
| FC                | 6,400   | 1,140       | 210                |        |  |  |  |
| NAS               |         |             |                    | .09    |  |  |  |
| TC                | 210     | 32          | 4.6                |        |  |  |  |
| FC                | 22.7    | 3           | 0.4                |        |  |  |  |
| Mariana Terrace   |         |             |                    | 2.03   |  |  |  |
| тс                | 8,900   | 3,850       | 92                 |        |  |  |  |
| FC                | 135,000 | 7,800       | 430                |        |  |  |  |
| B2d (wet weather) |         |             |                    | .10    |  |  |  |
| тс                | 380,000 | 145,000     | 50,000             |        |  |  |  |
| FC                | 40,000  | 14,300      | 5,200              |        |  |  |  |

#### APPENDIX A

# Detailed Site Descriptions

# Barrigada #1

The Barrigada #1 ponding basin is roughly a circular excavation 65 m in diameter and 7 m deep. The bottom area is  $3000 \text{ m}^2$  with a volume, to the highest observed water level, of  $12,000 \text{ m}^3$ . This equates to roughly three million gallons of ponded water during peak runoff periods. The usual volume is approximately half of this.

Barrigada #1 receives runoff from a .09 km² drainage area that is fed into a 0.61 m concrete pipe. This runoff water is discharged into the nothern end of the basin. There is, also, a large quantity of runoff that enters at the southern end as a result of the natural topography of the area. Based on observations and initial parameter measurements, the water characteristics were noted to be distinctly different at these two monitoring sites. Extensive vegetation growth in the central portion of the pond appears to act as a buffer between the northern and southern ends. The principle source of runoff water is from paved areas associated with commercial developments. This includes two service stations which are major contributors of oil and grease to the runoff waters. Additionally a septic tank located 23 m north of the drain outlet may have an impact on the ponded water.

The Mariana Limestone, which forms the majority of the exposed limestone on northern Guam, is an emerged reef and lagoon. As a result, an extremely heterogenous formation, consisting of two principle members and numerous facies, developed. The limestone formation underlying this area l is the Agana argillaceous member of the Mariana Limestone. This limestone is distinguished from the remainder of the formation by contamination from clay and volcanic detritus derived from the central volcanic highlands.

The predominant soil type at and around the study site is Chacha-Saipan clay. This is a latosolic intergrading of a yellowish-brown, firm clay (Chacha), and a red, firm clay (Saipan). It has a neutral to acid reaction. This soil type is commonly associated with the Agana argillaceous member. The test bore results showed a 14 m deposit of a light orange clayey silt (Chacha-Saipan clay) overlying a relatively hard limestone.

Construction of this basin at its present site was not advised since the clay deposit can reduce or completely impede infiltration of the ponded runoff. The principle reason used to justify construction was the elimination of an excessive flooding problem occurring in the drainage area.

It has been noted from field observations that infiltration is occurring but at a very slow rate. As a result the basin is more characteristic of a pond than an infiltration field and possesses many of the characteristic flora and fauna of naturally occurring ponds as found on Hydrilla verticillata, a vascular plant, dominates the flora in the pond as it does in several naturally occurring springs. The pond also contains an abundance of filamentous and "micro" algae. The microalgae gives the pond a characteristic green tint. Common road-site or disturbed area weeds and grasses abound along the edges of the basin. As the water level decreases this vegetation rapidly occupies all the newly exposed areas. A large assemblage of fauna is associated with the basin and pond. Most noteable in the pond are the mosquito fish (Gambusia affinis affinis and the tapoles of the marine toad, <u>Bufo</u> marinus. Additionally, the pond has abundant copepods, amphipods, ostracods, dragon fly nymoths and other larvae. A freshwater fish Tilopia and a catfish are found but have not been able to establish themselves. There are two types of snails around the pond as well as a large population of insects. Dogs, chickens and cats were commonly seen at the site, with an occasional dead animal found in the pond.

# Barrigada #2 and #3

The Barrigada #2 and #3 basin system consists of a long shallow, rectangular channel, 50 m long and 10 m wide, with a depth varying from 2 m at the northern end to less than .5 m at the weir, connected to a lower infiltration field, 50 m long and 40 m wide, with constant depth of 2 m. The channel was designed to act as a sediment trap for five sands, silts, and clays, thereby preventing clogging of the lower infiltration basin. This appears to be a fairly successful arrangement since ponding in B3 occurs only in the far east corner, with usually short periods of ponding.

The channel contains ponded water at both the weir and storm drain. The substratum at both these sites is sealed by an accumulation of silts and clays. Therefore the primary reduction of water at these sites is due to evaporation which is considerably higher at the weir site. The drain and weir sites are separated by a slight rise in the central portion of the channel. As a result, there is mixing of the waters only during runoff periods.

The storm drain runoff is characteristic of runoff from only the Barrigada Estates subdivision while the weir reflects additional input from natural runoff derived from adjacent paved and dirt roads. This runoff enters the side of the channel just south of the central rise. Therefore the storm drain and weir ponded waters are characteristically distinct and were treated as such for monitoring purposes.

The runoff water at the storm drain was usually high in organic detritus and man-made debris, with traces of oil and grease observable along the edges of the ponded water. Additionally, the runoff was usually moderately to highly turbid. The waters of the weir and lower basin were generally free of observable pollutants. It was noted on several occasions that foaming occurred in the northern end of the weir pond. High turbidities were characteristic of the weir and B3 runoff waters. This was due to suspension of red clay particles.

The underlying limestone formation is the uncontaminated member of the Mariana Limestone (pliocene-recent) referred to as Mariana limestone. This member underlies most of the northern plateau. Schlanger (1964) divides this member into two major facies: reef-wall and lagoon. The reef-wall facies, which is subdivided into numerous facies based on the depositional environment and matrix components, is characterized by numerous coral heads in growth position, cemented together by a finegrained white, dense limestone, primarily composed of coralline algae and incrusting foraminifera. The lagoon facies, which forms extensive deposits, is an accumulation of coral debris, shell and reef associated calcium carbonate detritus. This facies underlies this basin system. According to Mink (1975) the lagoonal facies is extremely heterogenous with a complicated history of formation which led to beach sands, marls, and lignitic material (from near shore swamps) as common components. Due to the heterogenous nature of this member, infiltration rates can vary dramatically from one location to another.

The soil type in the drainage area is Guam clay. It is the predominant soil type on northern Guam, comprising approximately 35 percent of the total island soil. It generally forms very shallow deposits on both Barrigada and Mariana Limestone. There are some isolated deeper deposits in the drainage area. Carrol (1963) describes Guam clay as a reddish, granular, friable, permeable latosol. It is frequently interceded with small to large limestone floaters.

As a result of the usually low water levels in B3 the fauna was restricted to <u>Bufo marinus</u> (adults and tapoles), snails, dragon fly nymphs and water striders. This pond is frequently visited by birds, including ducks, during periods of low ponding. The predominant flora in the basin are grasses, roadside weeds, <u>Leuceana</u> spp., cyanophyta (blue-green algae) and occasionally a filamentous chlorophyta (green algae).

The weir, which almost always contained some ponded water, has luxuriant algae growth, including <u>Chara zeylanica</u>, several filamentous

chlorophyta and numerous "micro" species. The faunal diversity in the ponded water is high, although large populations were never observed. The predominant organisms are <u>Bufo Marinus</u> (tadpoles & adults), copepods dragon fly nymphs, snails, amphipods, ostracods, and water striders. Birds, mostly ducks, frequently are seen feeding in the shallow end of the pond.

The storm drain is relatively low in diversity and abundance, in terms of both flora and fauna. It is surrounded by a luxuriant growth of sword grass, up to 2 m high, and numerous small grasses. Up until recently the only notable fauna in the pond was an occasional spawn of Bufo tadpoles. Recently a large population of Gambusia was introduced, presumably for mosquito control. The fish have not fared well, mainly due to over-crowding, a lack of food and lowered DO concentrations. Besides the grasses, the only notable flora is a blue-green alga that grows on the concrete wall and substratum.

#### Latte Estates #2 and #3

Four ponding basins were constructed for the Latte Estates subdivision. Only two of the basins, the central L2 and the western L3, contained a sufficient quality of ponded water to allow for routine sampling. The remaining two basins, located on the eastern end, were almost always dry. They have an extremely small drainage area. Apparently they were constructed to accommodate a possible eastward expansion of the subdivision.

12 is the largest of the four basins, receiving the bulk of runoff water. Runoff water entering this basin is exclusively residential. The basin measures  $85 \times 117$  m with an average depth of 6.4 m. It receives runoff from four storm drain systems. The bottom area is  $4370 \text{ m}^2$  with a capacity, to the expected maximum water surface elevation, of  $30,250 \text{ m}^3$ . This capacity was exceded by storm runoff from super-typhoon Pamela in May of 1976. At this time infiltration rates were noted to be in excess of 1 m per day. In less than a week over 8 million gallons of water percolated through this basin. This can be partly atributed to the back filling of approximately 1 m of loose gravel during completion of construction. Rapid infiltration occurs at the base of the main storm drain chute as a result of extensive limestone fracturing. Probably the major factor influencing infiltration is the underlying limestone formation, Marrigada Limestone.

Barrigada Limestone (miocene-pliocene) is centeralized on the northern plateau as a ring-shaped outcrop. It is a foraminiferal limestone that is intensely white, medium to coarse grained, and comparatively homegeneous detrital limestone. It is massive, commonly brecciated and ranges from compact and well lithified to extremely friable (Tracey et al, 1964).

Approximately 50 percent of the government owned wells are drilled in this formation, even though it comprises less than 20 percent of the northern limestone. This limestone appears to be highly permeable in comparison with the Mariana Limestone. Additionally, it appears to contain a higher quality of basal water.

The surrounding soil type is Guam clay. Test bore results defined this soil type as a moderately stiff, red brown clay silt grading into a soft to moderately stiff, orange brown clayey silt. The soil contains some limestone floaters to at least gravel size (4.7 to 76.2 mm).

Prior to the typhoon in May of 1976, a substantial body of ponded water, 1/4 to 1/2 of the bottom area, would form in the eastern end of L2. Afterwards only a small shallow pond was maintained in the far southeastern corner. During a period of abnormally low rainfall this pond dried up.

The faunal assemblage in L2 was normally low in diversity and abundance with only <u>Bufo Marinus</u> (tadpoles and adults) and dragon fly nymphs being noticable, although both were noted to be extremely abundant at times. When the water level decreased to approximately 10 cm. massive kills of <u>Bufo</u> tadpoles were noted. At this time the water temperature, at zenith, would be in excess of  $35^{\circ}$ C.

The principle flora in and around pond is a blue-green algae, <u>Nostoc</u>. Several species of filamentous and "micro" algae periodically produced luxuriant blooms. This would not notably increase the DO concentrations. The sides and dry portions of the basin are moderately covered by numerous road side weeds and small grasses.

L3 is a triangular excavation 40 m long, with a maximum width of 12 m and depth of 3 m. The northern end of the basin has an increased bottom area with an average depth of 4.5 m. Runoff waters enter by way of a single storm drain at the northern end or by a natural drainage cut in the eastern side. The capacity of the basin is at least 1,100 m $^3$ , with a maximum observed volume, after the typhoon in May of 1976, of 800 m $^3$ .

Infiltration rates in L3 are relatively low due to a partial sealing of the limestone substratum by Guam clay. The Guam clay is derived from adjacent land areas and by erosion of a small pocket located at the southern end of the basin. The water level in the pond is normally low as a result of a small drainage area.

The primary source of runoff waters is associated with the subdivision. The basin also receives input from agriculturally developed lands to the east, and disturbed lands to the north and south. This runoff water enters by way of the natural drainage cut.

The flora and fauna associated with L3 is very similar to that found in L2, with one notable exception, no large blooms of either filamentous or "micro" algae were observed.

Routine monitoring of this basin was discontinued in August of 1976. It was felt that L2 would provide sufficient information for this study area.

### Dededo

The Dededo basin was excavated in a large shallow natural depression. There are several natural low relief feeders leading into the area from the north and south. The basin design incorporated these natural topographic features in order to minimize the amount of cut. The drainage area is in excess of 75 hectares. Runoff enters this basin by means of a long concrete chute at the northern end and a storm drain at the southern end. The constructed basin has over 31,600 m² of bottom area with an average depth of 2.1 m. It has a capacity, to the expected maximum level, of 68,200 m³. It exceeded this volume during the typhoon in May of 1976. Although no infiltration rates were measured, it was noted that in less than 2 weeks the basin completely dried up. This large influx of water apparently improved the infiltration ability of the basin, since afterwards only minimum ponding for short periods of time would occur.

The runoff waters entering the basin are derived from at least four different land use of sources. It primarily receives runoff from residential and commercial developments, but additionally there is natural drainage from both recently disturbed and undisturbed lands.

The underlying limestone formation is Barrigada Limestone. It is a coralline limestone which is dense to friable, honogenous, and intensively white when unweathered. Soil deposits that range from a few centimeters to several meters veneer this limestone. The predominant soil type is a reddish brown, clayey silt which has been classified as Guam clay. Additionally, the basin and surrounding low lands contain a water borne mixture of a brownish white coralline gravel with varying amounts of sand, silt, clay and organic detritus.

Savanna-line grasslands surround the eastern sides of the basin. This area contains roadside weeds, vines, shrubs, grasses, and Leuceana <a href="mailto:spp">spp</a>. (tangantangan) as common components. Most of these plants are found growing in or on the sides of the basin. The most abundant flora found in the pond, when it exists, is the blue-green alga <a href="Mostoc">Nostoc</a>. A very thin veneer of <a href="Mostoc">Nostoc</a> overlies the substratum in the central portion of the basin.

The faunal assemblage associated with this ponded water is low in diversity. The most abundant organisms were dragonfly nymphs. There were also a few large spawns of  $\underline{\text{Bufo}}$  marinus tadpoles observed. The

only other notable organism that frequented the pond were snails and birds.

## Perez Acres

The Perez ponding basin is an elongated trapazoid, being 152 m long and up to 27 m wide at the eastern end, where ponding occurs. The western end is primarily a 50 m maintenance ramp. The capacity of the basin, to the expected maximum water elevation, is 6400 m³. There is a pair of storm drains with vertically aligned outlets located toward the base of the ramp. The lower drain always had a higher turbidity runoff. The reason for this was not ascertained. Additionally, there are two concrete lined chutes on the eastern end. The southern chute receives runoff from a grassy area adjacent to a swimming pool. The northern chute functions as both a spillway and a drainage system for the eastern boundary of the development.

The development is extensively landscaped; as a result there is very little exposed soil. Most of the soil used for landscaping was transported in. It appears to be a mixture of Agat-Asan-Atate clays and Guam clay with varying amounts of sand. The natural soil type found in the area is Guam clay. It overlies a dense to friable coralline Barrigada Limestone. During construction percolation rates of 102 cm/hr, with a 3 m head, were obtained. Recently observed rates are substantially lower. This reduction is a result of sealing of the substratum by a mixture of silt and clay.

The lands surrounding the development are primarily undisturbed limestone forest, a dense, luxurant growth of tree, shrubs, and vines. Adjacent disturbed lands contain roadside weeds, grasses, and Leuceana spp. as common components. These roadside weeds and grasses are well established in the western portion of the basin.

The ponded water is always murky, with a normal turbidity ranging from 10-20 NTU. This is apparently a result of clay particles remaining in a state of suspension. As a result, observations of organisms were limited. Recently there was an introduction of <u>Hydrilla verticillata</u>, "micro" algae, <u>Gambusia</u>, water striders, and snails. Prior to this introduction, <u>Nostoc</u>, occasional spawns of <u>Bufo</u> tadpoles, and dragon fly nymphs were the only notable fauna.

There is a bad mosquito problem in the development, but no larvae were ever observed in the pond. Despite this observation, there were occasional massive kills of <u>Gambusia</u>, <u>Bufo</u> tadpoles, water striders, and dragon fly nymphs. Introduction of pesticides in pond waters for mosquito control will probably worsen the problem by killing the mosquito fish, Gambusia.

## Naval Air Station

The NAS storm drain, with its continuous flow of brackish water, maintains an extensive sediment delta on the adjourning reef flat. The configuration and formation of the delta follow the classic delta formation. The primary expansion is seaward with a displacement of the inner reef flat moat 75-100 m seaward. At low tide 20-60 m of the delta is exposes. This greatly modifies the current patterns in this area.

Conservative estimates of the primary brackish water flow is l million gallons per pay. This value could be as high as 3 million gallons/day. The estimates are based on the observed normal discharge and approximate measurements and calculations.

There are numerous euryhaline fish species associated with the primary discharge water at both the drain outlet and in the vicinity of the delta. Local fishermen have frequently been observed fishing for these species. The abundance of fish were observed to greatly increase when extremely extensive Enteromorpha blooms occurred on the delta. In addition to the fish species, large populations of hermit crabs, marine cocepods, and unidentified crustaceans occurred in the vicinity.

# East Agana Bay

The EAB monitoring site consists of a 30 m channel that extends from Marine Drive to the shoreline. At the seaward end of the channel the bottom is elevated 1 m, with the remainder of the landward channel maintaining a depth between 2 and 2.5 m. As a result the channel contains a continuously ponded body of water with an average depth of 1 m. Part of this water is accounted for by sea water intrusion at normal peak high tides. During abnormally high tides the amount of intrusion was considerable.

Two 0.61 m in diameter storm drain pipes are located at the Marine Drive end, which was the sampling location. Additionally, a concrete lined chute located on the northern bank, adjacent to Marine Drive, discharges runoff derived from vacant lots and several small commercial developments. The storm drain waters are derived from streets and parking lots associated with commercial developments.

The EAB storm drain maintains a large lateral delta on the adjoining reef flat. It extends 25-30 m seaward with primary expansion occurring east and west along the shoreline. The delta has a high organic content with large amounts of man-made debris incorporated into its structure. The delta appeared to remain reasonably stable, in terms of size and sediment volume, throughout the study period.

The ponded water in the channel was usually characterized by moderate to heavy accumulations of debris (man-made and organic), low to heavy concentrations of oil and grease, and a scummy film along the drain outlets and at the seaward end.

#### Mariana Terrace

This ponding basin occupies the southwestern corner of the development. This area, prior to basin construction, was a natural drainage accumulation site, receiving runoff primarily from the northern and western adjacent foothills. The excavated basin originally served both as a storm runoff collector basin and a leaching field for a small sewage treatment plant, located on the southwest corner of the basin. During most of the study raw sewage was leached into the far southern side of the basin, with minor ponding occuring in the southeast corner. This ponded water, when observable, was a black muck with exceedingly high organic and faunal content. Several times there was a detectable odor of raw sewage.

The basin is a large circular excavation with a capacity of at least  $200,000~\text{m}^3$ . The depth varies from 12 m on the eastern side to 6-8 m on the western side. Five storm drains discharge into the basins with three outlets on the western side and two outlets in the northern and eastern sides. Ponding occurs in the vicinity of the northern outlets and at the central western outlet. The western pond is a 10 m channel bound by mat-like organic detritus. Input into the western pond occurs only during runoff while the northern pond receives almost continual input.

The drain area is a transition zone between Mariana and Barrigada Limestone. The basin appears to be excavated in Mariana Limestone of lagoonal origin. A deposit of fine-coarse sands occurs in the northeastern corner of the basin. This is due to erosion of the eastern bank and an adjacent construction project.

The soil types in the drainage area are Chacha-Saipan and Saipan-Yona-Chacha clays. The latter soil type is an intergrading of the Chacha-Saipan clays with a shallow brownish lithosal (Yona). This soil type has limited occurrence on the upper northern end of Guam. There are also some alluvial clay deposits in the vicinity of the basin.

There is an extremely luxuriant growth of flora in the basin. Grasses, including sword grass, creeping grasses, and weeds, dominate the basin. Additionally, there is extensive growth of roadside weeds, shrubs, vines, Leuceana, filamentous algae, "micro" algae, and bluegreen algae. This resulted in large accumulations of organic detritus, with dense matting, in excess of 1 m, frequently occurring.

The faunal assemblage was extremely diverse with <u>Bufo</u> marinus (tadpoles and adults), mosquito larvae, snails, amphipods, copepods, decapods, ostrapods, <u>Littoria glauerti</u> (tree frog), dragon fly nymphs, snakes, and numerous insects as common components. There was a mosquito problem as a result of the basin. This cleaning operation resulted in improved infiltration ability of the basin.

A diverse assemblage of euryhaline and freshwater organisms were observed in the ponded water. This included fish (at least four species), marine crabs, <u>Bufo</u> tadpoles and adults, copepods, amphipods, ostracods, and snails. There were more marine related organisms at the seaward end.

Both marine and freshwater algae were observed in the pond. The marine algae tended to remain at the seaward end, with the most notable alga being <u>Enteromorpha</u>. The fresh water algae, greens and bluegreens, showed luxuriant growth in the vicinity of the drain outlets. Creeping grasses and common roadside weeds covered the sides of the channel and the adjacent land areas.

## West Agana Bay

A comparatively small, 10 m in diameter, sediment is maintained by the WAB storm drain. The delta was unique, in relation to the other storm drain deltas, since there was an almost total lack of algal growth and limited marine organisms on the top surface. Abundant growth of Padina tenius and lesser amounts of Sargassum polycistum occurred along the seaward periphery. This produced a dead zone appearance on the delta. Occasionally small blooms of Enteromorpha and phytoplankton occurred along the periphery with limited expansion onto the delta.

A small filamentous algae was well established in the storm drain pipe. It varied in color from dark brown to tan to gray green. This site was the only recorded location for this algae.

Hermit crabs were common in the vicinity of the outlet. During low tides they tended to migrate toward the outlet, but usually avoided the runoff water. At high tides both blennies and hermit crabs were observed to frequent the storm drain outlet, including movement into the pipe.

During the study period the diameter and sediment accumulation of the delta were observed to increase with a 3-4 m seaward expansion and an 8-10 m lateral expansion. This expansion may be partly accounted for by the construction of an island and causeway north of the outlet.

Table 19. Results of chemical analyses of Barrigada Village (Ble) ponding basin water.

| DATE         | pH<br>UNITS | TEMP.        | TURB<br>(NTU'S) | Sp.COND.<br>umho/cm |            | TS  | 22  | vs  | VSS  | TDS       | CL-      | 504= | HARD<br>MESS | CA++<br>HARD |
|--------------|-------------|--------------|-----------------|---------------------|------------|-----|-----|-----|------|-----------|----------|------|--------------|--------------|
| 12/ 2/75     |             |              | 5.5             |                     |            |     | 1   |     |      |           |          |      |              |              |
| 12/6         |             | ì            | 3.8             |                     |            | 1   | 1   | 1   |      | 1         | 1        |      | 1 1          |              |
| 12/19        | 1           | ì            | 3.2             |                     |            | 1   |     | 1   |      | [         | 1        |      |              |              |
| 1/14         | 1           | ١            | 3.0             |                     | l          | 1   |     | i   |      | [         |          |      |              |              |
| 2/ 3         | 8.63        | 28.4         |                 | 120                 | l          | !   |     |     |      | I         |          |      | !            |              |
| 2/5          | 9.00        | 27.2         | 12.5            | 128                 |            | ł   |     |     | 1    | I         |          |      |              |              |
| 2/12         | 9.11        | 28.4         | 8.9             | 118                 |            | ł   |     |     | 1    | 1         | Ι.       |      | [            |              |
| 3/23         | 7.60        | 31.6         | 3.3             | 144                 |            |     | Į.  |     | ļ    | 1         | 1        |      |              |              |
| 3/24         | 9.20        | 32.0<br>31.7 | 7.4             | 140                 |            |     | ŀ   |     |      | 1         | 1 1      |      |              |              |
| 3/25<br>3/26 | 9.20        | 30.5         | 7.0<br>5.0      | 138<br>135          |            |     | İ   | ŀ   |      | 1         |          |      |              |              |
| 4/ 2         | 9.05        | 30.7         | 9.2             | 143                 |            | 1   | 1   |     |      | 1         |          |      |              |              |
| 7/ 6         | 9.2         | 32.3         | 2.4             | 224                 | <.1        | 153 | 4.0 |     |      | 140       |          |      | 1 1          |              |
| 7/19         | 8.30        | 28.5         | 9.4             | 155                 | <.1<br><.1 | 81  | 9.0 | 66  | 1    | 149<br>72 | 45<br>14 |      | 1 1          |              |
| 7/26         | 8.92        | 30.2         | 6.8             | 120                 | «.1        | 64  | 9.0 | 0.0 | 4    | 55        | 1 12     |      | l I          |              |
| 8/10         | 8.95        | 27.4         | 2.7             | 111                 | ₹.1<br>₹.1 | 105 | 2.4 | i   | 2    | 103       | 16       |      | 1 (          |              |
| 8/24         | 8.90        | 28.8         | 4.4             | 127                 | <.1        | 133 | 4.0 |     | 2.2  | 129       | 5.8      |      | 1 1          |              |
| 9/8          | 7.25        | 26.9         | 2.3             | 94                  | <.1<br>≺.1 | 85  | 1.2 |     | 2.2  | 83        | 5.7      |      | l l          |              |
| 9/22         | 9.00        | 29.2         | 2.6             | 88                  | 4.1        | 56  | 3.9 |     | 3.4  | 52        | 6.9      | 2.0  |              |              |
| 10/ 6        | 9.70        | 33.2         | 1.8             | 100                 | <.1        | 27  | 13  | ļ . | 10.6 | 14        | 6.0      | 2,0  | 1 1          |              |
| 10/20        | 9.22        | 29.6         | 1,3             | 97                  | <.1        | 69  | 32  | 64  | 19   | 37        | 7.8      |      | l i          |              |
| 11/ 3/76     | 8.48        | 29.0         | 12              | 127                 | < 1        |     | 3.4 | 98  | 2.9  | "         | 7.8      |      | 1            |              |
| 11/17        | 8.72        | 27.B         | 1.8             | 112                 | <.i        | 35  | 2.4 | 21  | 2.1  | 33        | 7.7      |      |              |              |
| 12/ 3        | 9.19        | 26.3         | 4.4             | 117                 | ٠,1        | 165 | 27  | 59  | 13   | 38        | 7.2      | <1.0 | }            |              |
| 12/15        | 9.52        | 25.6         | 25              | 119                 | <.1        | 121 | 35  | 59  | 12   | 86        | 9.3      | <1.0 | 1            |              |
| 12/30        | 9.18        | 30.5         | 1.0             | 122                 | <.1        | 79  | 2.4 | 27  | 1.5  | 77        | 7.8      | 1.7  |              |              |
| 1/ 3/77      | 10.24       | 29.4         | 3.6             | 138                 | .1         | 139 | 23  | 61  | 12   | 116       | 10       |      |              |              |
| 1/27         | 9.15        | 29.7         |                 |                     | .1         | 94  | 15  | 15  | 9.4  | 79        | ii i     |      |              |              |
| 2/9          | 8.85        | 30.2         | 1.9             | 177                 | .80        | 183 | 7.8 | l   | 8.5  | 175       | 11       |      |              |              |
| 2/23         | 7.32        | 25.5         |                 | 229                 | 28         | 343 | 12  | 173 | 9    | 341       | 14       | <1.0 |              |              |
| 3/10         | 8.28        | 32.2         | 1.6             | 180                 | 3          | 107 | 12  | 26  | 12   | 85        | 15       |      | 67           |              |
| 3/23         | 7.15        |              | 2.2             | 211                 | <.1        | 143 | 2.7 | 1   | 2.7  | 140       | 14       |      | 86           | 81           |
| 4/13         | 8.55        | 29.5         | 1.8             | 181                 | 0.0        | 266 | 2.9 | 1   | 2.9  | 263       | 10       |      | 73           | 71           |

| DATE                    | T.ALK      | P.ALK      | DQ   | 300   | COD      | P04-P  | TP   | NO <sub>2</sub> -N | но <sub>3</sub> −и | TC      | PC       | MBA5      | OIL |
|-------------------------|------------|------------|------|-------|----------|--------|------|--------------------|--------------------|---------|----------|-----------|-----|
| 2/ 2/75                 |            |            | 12.3 |       | T        | 0.0    |      | <.001              | .151               | 1       |          | T         |     |
| 2/ 6                    |            |            | 6.5  | l     |          | .004   | 1    | 0.0                | .028               |         |          |           |     |
| 12/19                   | }          |            | 6.6  | l     |          | .026   | !    | 0.0                | .04B               | 1       |          |           | l   |
| 1/ 1/76<br>1/ 5         |            |            | 8.5  | l     |          | .077   | 1    | .011               | .602               | 1       | }        |           | ļ   |
| 1/14                    |            |            | 7.6  | 1     |          | ,036   | ]    | 0.0                | .003               | 4       | <u>t</u> | 1         |     |
| 2/ 3                    | 58         | 0.0        | 10.1 |       | ì        | ,064   | ļ    | .050               | .109               |         |          |           | 1   |
| 2/ 5                    | 58         | 0.0        | ,    |       |          | .056   | 1    | .014               | 0.0                | 1       | ŀ        |           |     |
| 2/12                    | 57         | 9.0        | 10.2 | 1     |          | .042   | Į.   | 0.0                | .003               |         | <b>!</b> |           |     |
| 3/23                    | 75         | 6.2        | l    | i     | 1        | .040   | [    | 0.0                | .151               | İ       | 1        |           |     |
| 3/24                    | 74         | 5.0        |      | l     | <b>†</b> | .055   |      | 0.0                | .105               |         |          | 1         | -   |
| 3/25                    | 73<br>72   | 8.0<br>8.4 | į    | l     | 1        | .051   | 1    | ≺.001<br>0.0       | . 190              |         |          |           | İ   |
| 3/26<br>4/ 2            | 60         | 3.3        | [    |       |          | .049   | I    | 0.0                | .013               |         | Ì        |           |     |
| 7/6                     | 35         | 7.4        | 9.5  | 1     | 34       | .001   | l    | ₹.001              | .007               | 1       |          | 1         |     |
| 7/19                    | 34         | 1.8        | 5.0  | 1.3   | ŽŽ       | .024   |      | .002               | .006               | 1       |          |           | 1   |
| 7/25                    | 44         | 8.0        | 8.5  | 1.1   | 7.1      | .056   |      | 0.0                | .005               | 1       |          | 1         | 1   |
| 8/10                    | 46         | 10.0       | 7.5  | 2.6   | 0.0      | .039   |      | .009               | 0.0                |         |          | 1         |     |
| 8/24                    | 5)         | 10.0       | 6.3  | Ι.    | 2.7      | ,067   |      | 0.0                | .117               |         |          | 1         |     |
| 9/ 2                    | 46         | 3.3        | 4.5  | ,,9   | 31       | .060   | ļ.   | <.001              | .063               | ١,,,    |          | 1         | 1   |
| 9/22                    | 38         | ]]<br>  ]4 | 9.0  | 2.5   | 12       | .016   | ļ    | .001<br>100.>      | .039               | < 10    |          |           |     |
| 10/ 6<br>10/20          | 46<br>51   | 10.7       | 6.7  | 2.3   | 32       | .031   | !    | 0.0                | .002               |         |          | 1         |     |
| 17 3                    | 53         | 2.3        | 6.8  | 1.0   | lii      | .019   |      | .004               | .145               | 1       |          | 1         |     |
| 11/ 5                   | ••         |            | 7.0  | ! ''' | 1        | ,      |      |                    | 1                  | 1,100   | 240      |           | ļ . |
| 1/17                    | 49         | 2.9        | 5.2  | .9    | 13       | .019   |      | 0.0                | .040               | ''      |          | 1         |     |
| 2/ 1                    | 49         | 8.8        | 10.7 | 1.5   | 9.4      | .026   | ł    | <.001              | .004               |         |          | 1         |     |
| 2/ 3                    | i          | i          | ļ    |       |          |        | [    | l                  | Į.                 | 270     | 1        | 1         | i   |
| 2/15                    | 51         | 9.9        | 8.4  | 2.7   | 20       | .045   | 801. | .001               | .122               | 1       | ١        | 1         | 1   |
| 2/17                    | <b>.</b>   | ١          | }    | ١.    | 1        | -14    | 1    | ١ 🚓                | ١ ,,,              | 11,000  | 18       | 1         | Ì   |
| 2/30                    | 50         | 7.4        | 8.9  | .4    | 4.7      | .014   | .038 | <.001              | <.001              | 6,600   | 40       | .152      | i   |
| 1/12/ <b>76</b><br>1/13 | 42         | 23         | 13.2 | 2.3   | 21       | .022   |      | <.001              | .014               | 0,000   | 40       | .075      | i   |
| 1/25                    | <b>*</b> * | * '        | '3.2 | •     | 1-1      |        |      | `.,                | . •                | 10      | 110      | .0/3      |     |
| 1/27                    | 53         | 14         | 9.5  |       | 130      | .082   | .139 | .001               | .037               | 1       | '''      | .135      | ļ   |
| 2/ 8                    |            | '          |      |       |          |        |      |                    | 1                  | 100     | 260      | 1         | l   |
| 2/9                     | 67 1       | . , ,      | 6.8  | 4.7   | 1 30     | .057   | .158 | 1.002              | 1.016              | . '     | ,        | 1114      | 1   |
| 2/22                    | ۰,         | ′          | 0.0  | 7./   | J 30     | 1 .037 | .136 |                    | .010               | TnTc    | 100      | 1 '''     | 1   |
| 2/23                    | 86         | 6          | 1.0  | 5.5   | 41       | .037   | .092 | .602               | .061               |         | , ,,,,   | .163      | 1   |
| 3/ 9                    |            | _          |      | ***   |          |        |      |                    | !                  | <10,000 | 150      |           | 1   |
| 3/10                    | 66         | 3          | 6.2  | 14    | 51       | .028   | .297 | .004               | .012               |         |          | .431      |     |
| 3/22                    |            |            |      | l     | 1        |        |      | 1                  | 1                  | <10,000 | 100      | 1 .       | I   |
| 3/23                    | 79         | 0          | 1.8  | 2.6   | 35       | .018   | .82  | 0.0                | .003               |         | L        | .177      | 1   |
| 4/ 5                    |            | ا ـ ـ ا    |      | l     | 1        |        |      |                    | ]                  | <1,000  | 3,470    | ١ , , , , | !   |
| 4/13                    | 68         | 4.5        | 9.1  | l     | 22       | .032   | .048 | .001               | .005               |         |          | .185      | 1   |

Table 20. Results of chemical analyses of Barrigada Village (Blc) ponding basin water.

|                                                                                                                                                       | рН                                                                                                                                           | TEMP.                                                                                                                                                                                                                | 1                                                                                                                                                                                | SIS OF P                                                                                                          |                                                 | BASIN                                                                                                                                              | WATER                            | <u> </u>                                    |                                                                                             | T                                                                                            | T 1                                                |                                                                   |        | HARO     | CA+                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|--------|----------|---------------------------------------|
| DATE                                                                                                                                                  | (ORITS)                                                                                                                                      | °C                                                                                                                                                                                                                   | (NTU)                                                                                                                                                                            |                                                                                                                   | m SET.5                                         | SOL .                                                                                                                                              | rs                               | \$\$                                        | ٧s                                                                                          | VSS                                                                                          | TOS                                                | CL-                                                               | \$04≠  | NESS     | HAR                                   |
| 12/16/7 <b>5</b><br>12/19                                                                                                                             | ,                                                                                                                                            |                                                                                                                                                                                                                      | 3.7                                                                                                                                                                              |                                                                                                                   | }                                               |                                                                                                                                                    | - 1                              |                                             | İ                                                                                           | İ                                                                                            |                                                    |                                                                   |        |          |                                       |
| 1/ 1/76 1/ 15 1/ 15 1/ 14 2/ 3 2/ 3 2/ 5 2/ 12 3/ 3 3/ 24 3/23 3/24 3/25 4/ 2 7/ 6 8/24 8/10 8/24 8/10 8/24 10/20 10/20 10/20 10/22 11/ 5 11//7 12/ 1 | 8.15<br>8.91<br>7.25<br>8.90<br>8.60<br>9.20<br>9.40<br>9.00<br>9.42<br>9.25<br>9.25<br>9.25<br>9.18<br>9.52<br>8.92<br>7.94<br>7.68<br>8.15 | 30.5<br>29.8<br>28.0<br>27.2<br>28.5<br>28.3<br>29.7<br>31.8<br>31.9<br>31.9<br>32.5<br>26.7<br>27.4<br>28.9<br>27.4<br>38.1<br>29.3<br>27.4<br>28.9<br>27.4<br>28.9<br>27.4<br>28.9<br>27.4<br>28.9<br>27.4<br>28.9 | 3.0<br>6.5<br>12<br>10<br>4.8<br>2.5<br>5.3<br>3.6<br>5.3<br>4.5<br>10<br>3<br>80<br>2.8<br>4.0<br>125<br>3.5<br>12,8<br>3.5<br>12,8<br>3.5<br>12,5<br>3.5<br>12,7<br>2.7<br>2.7 | 91<br>124<br>126<br>136<br>138<br>138<br>138<br>132<br>144<br>225<br>105<br>127<br>119<br>86<br>120<br>148<br>111 | <<<<<<<<<<.                                     | 12<br>16<br>16<br>4 65<br>1 4<br>1 12<br>1 12<br>1 13<br>1 14<br>1 15<br>1 1 15<br>1 1 15<br>1 1 15<br>1 1 1 15<br>1 1 1 15<br>1 1 1 15<br>1 1 1 1 | 06<br>40<br>56<br>14<br>38<br>25 | 3.5<br>20<br>1.7<br>334<br>3.4<br>9.0<br>10 | 80<br>3.2<br>2.0<br>127<br>33<br>50<br>60<br>20<br>22                                       | 5.8<br>2.1<br>5.0<br>98                                                                      | 164<br>28<br>103<br>138<br>222<br>41<br>149<br>115 | 44.6<br>4.4<br>8.9<br>6.1<br>15<br>6.7<br>9.1<br>13<br>7.6<br>6.9 | 1.5    |          |                                       |
| 12/30<br>1/10/77                                                                                                                                      | 9.02                                                                                                                                         | 31.0                                                                                                                                                                                                                 | 1.2                                                                                                                                                                              | 135                                                                                                               | ۲.                                              |                                                                                                                                                    | 67                               | 5.0<br>5.2                                  | 49<br>78                                                                                    | 3.9                                                                                          | 84<br>162                                          | 8.0<br>2 <b>4</b>                                                 | 2.6    |          |                                       |
| 1/13<br>1/27<br>2/ 9                                                                                                                                  | 8.80<br>8.20                                                                                                                                 | 32.5<br>30.0                                                                                                                                                                                                         | 9.8                                                                                                                                                                              | 223                                                                                                               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \           | .1   (                                                                                                                                             | 67<br>38                         | 17<br>18                                    | 13                                                                                          | 8.2                                                                                          | 50<br>120                                          | 11                                                                |        |          |                                       |
| 2/23<br>3/10                                                                                                                                          | 7.37<br>9.00                                                                                                                                 | 26.0<br>29.1                                                                                                                                                                                                         | 3.2                                                                                                                                                                              | 216<br>225                                                                                                        |                                                 |                                                                                                                                                    |                                  | 5.0<br>9.0                                  | 28<br>8.0                                                                                   | 5.0<br>9.0                                                                                   |                                                    | 13<br>17                                                          | <1,0   | 91       | 1                                     |
| 3/22<br>3/23<br>4/13                                                                                                                                  | 6.71<br>7.38                                                                                                                                 | 25.4<br>27.5                                                                                                                                                                                                         | 90                                                                                                                                                                               | 111<br>208                                                                                                        | <.1<br><.1                                      | 13                                                                                                                                                 |                                  | 3.6                                         | 44                                                                                          | 15                                                                                           | 90<br>320                                          | 11<br>10                                                          |        | 42<br>87 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
| DATE                                                                                                                                                  | T.ALK                                                                                                                                        | P.ALK                                                                                                                                                                                                                | DO                                                                                                                                                                               | вор                                                                                                               | CDO                                             | P04-P                                                                                                                                              | TP                               | NO <sub>2</sub>                             | - N                                                                                         | N03-N                                                                                        | TC                                                 | FC                                                                | MBA    | s 01     | L                                     |
| 12/16/75                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                      | 5.7                                                                                                                                                                              |                                                                                                                   |                                                 | .008                                                                                                                                               |                                  |                                             | 0                                                                                           | .005                                                                                         |                                                    |                                                                   |        |          |                                       |
| 12/19<br>1/ 1/76<br>1/ 5<br>1/14<br>2/ 5<br>2/12<br>3/ 3                                                                                              | 43<br>57<br>66                                                                                                                               | 0<br>8.6<br>0                                                                                                                                                                                                        | 5.8<br>6.7<br>6.7<br>7.4<br>9.9<br>5.5                                                                                                                                           |                                                                                                                   |                                                 | .041<br>.059<br>.033<br>.025<br>.048<br>.042                                                                                                       |                                  | ٠. ا                                        | 015<br>0<br>0<br>051<br>0<br>012                                                            | .341<br>.260<br>.284<br>.022<br>.001<br>.020                                                 |                                                    |                                                                   |        |          |                                       |
| 3/ 4<br>3/23<br>3/24<br>3/25<br>3/26<br>4/ 2<br>7/ 6<br>7/19<br>8/10<br>8/24<br>9/ 8<br>9/ 8                                                          | 68<br>76<br>74<br>76<br>73<br>60<br>35<br>40<br>47<br>54<br>123<br>43<br>50<br>64                                                            | 1.1<br>6.2<br>4.5<br>7.5<br>8.7<br>3.2<br>9.2<br>0<br>14<br>10<br>6.1                                                                                                                                                | 8.8<br>7.2<br>8.8<br>7.1<br>6.3<br>6.4                                                                                                                                           | 1.3<br>.7<br>1.7<br>.9<br>3.8<br>3.7                                                                              | 47<br>32<br>2.7<br>3.7<br>143<br>10<br>29<br>42 | .039<br>.039<br>.035<br>.037<br>.050<br>.015<br>.063<br>.033<br>.053<br>.029<br>.009                                                               |                                  | ).<br>( < .1<br>( < .1                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | .122<br>.024<br>.180<br>.015<br>.005<br>.128<br>.014<br>.145<br>.140<br>.108<br>.083<br>.014 |                                                    |                                                                   | 57     |          |                                       |
| 11/ 3<br>11/ 5                                                                                                                                        | 45                                                                                                                                           | 4.8                                                                                                                                                                                                                  | 6.0                                                                                                                                                                              | .5                                                                                                                | 16                                              | .036                                                                                                                                               |                                  | .                                           | 002                                                                                         | .075                                                                                         | 1,500                                              | 40                                                                | )5     |          | - 1                                   |
| 11/17<br>11/19                                                                                                                                        | 58                                                                                                                                           | 0                                                                                                                                                                                                                    | 3.4                                                                                                                                                                              | .9                                                                                                                | 7.0                                             | .026                                                                                                                                               |                                  |                                             | 0                                                                                           | .004                                                                                         |                                                    | <16                                                               | 00     |          | 1                                     |
| 12/ 1<br>12/ 3                                                                                                                                        | 64                                                                                                                                           | 0                                                                                                                                                                                                                    | 2.8                                                                                                                                                                              | 1.3                                                                                                               | 13                                              | .007                                                                                                                                               | 1                                |                                             | 0                                                                                           | .017                                                                                         | 3,700                                              | 14                                                                |        | . ]      |                                       |
| 12/13<br>12/15                                                                                                                                        | 148                                                                                                                                          | 0                                                                                                                                                                                                                    | 5.9                                                                                                                                                                              | 17                                                                                                                | 192                                             | .034                                                                                                                                               | 1.1                              | 19 <.                                       | 001                                                                                         | . 020                                                                                        | 7,600<br>14,900                                    | 4,70                                                              | 00 1.0 | •        |                                       |
| 12/29<br>12/30<br>1/10/77                                                                                                                             | 61                                                                                                                                           | 2.0                                                                                                                                                                                                                  | 5.5                                                                                                                                                                              | 2.1                                                                                                               | 3.6                                             | .027                                                                                                                                               | .00                              | . 88                                        | 001                                                                                         | <.001                                                                                        | 1,100                                              | .1                                                                |        | 18       |                                       |
| 1/13<br>1/25                                                                                                                                          | 62                                                                                                                                           | 4                                                                                                                                                                                                                    | 8.5                                                                                                                                                                              | 2.6                                                                                                               | 16                                              | .024                                                                                                                                               | .06                              | i3 <.0                                      | 100                                                                                         |                                                                                              | 7,000                                              | 20,00                                                             | 1,     | 7        |                                       |
| 2/ 8                                                                                                                                                  | 48                                                                                                                                           | 11                                                                                                                                                                                                                   | 11.1                                                                                                                                                                             |                                                                                                                   | 19                                              | .013                                                                                                                                               | .04                              | ۰.۵ د ۱                                     | 100                                                                                         | .004                                                                                         | 1,200                                              | 1,00                                                              | 1.1    | 8 17     |                                       |
|                                                                                                                                                       | 76                                                                                                                                           | 1.7                                                                                                                                                                                                                  | 6.6                                                                                                                                                                              | 5.6                                                                                                               | 33                                              | .024                                                                                                                                               | .10                              | 12 .0                                       | 001                                                                                         | .007                                                                                         | 1,450                                              | 20                                                                | ,2     | 8 26     |                                       |
| 2/22                                                                                                                                                  | 90                                                                                                                                           | 0                                                                                                                                                                                                                    | 1.0                                                                                                                                                                              | 3.5                                                                                                               | 27                                              | .014                                                                                                                                               | .09                              | 57 <.C                                      | 001                                                                                         | .046                                                                                         | <10,000                                            | 1                                                                 | .2     | 1        |                                       |
| 3/ 9<br>3/10<br>3/22                                                                                                                                  | 88                                                                                                                                           | 0                                                                                                                                                                                                                    | 6.2                                                                                                                                                                              | 11                                                                                                                | 33                                              | .134                                                                                                                                               | .11                              | 9 .                                         | 001                                                                                         | .003                                                                                         | <10,000                                            | 50                                                                | .2     | 4        |                                       |
| 3/22<br>4/ 5                                                                                                                                          | 47                                                                                                                                           | 0                                                                                                                                                                                                                    | 8.1                                                                                                                                                                              | 5.3                                                                                                               | 33                                              | .07B                                                                                                                                               | .16                              | 57 4.0                                      | 001                                                                                         | .046                                                                                         | 3,000                                              |                                                                   | .1     | 4 4      | .3                                    |
|                                                                                                                                                       | 1                                                                                                                                            | 0                                                                                                                                                                                                                    | 3.0                                                                                                                                                                              | ı I                                                                                                               | 32                                              | .008                                                                                                                                               | .08                              | نا .                                        | 002                                                                                         | .007                                                                                         | 2,000                                              | ı ''                                                              | 4.9    | . 1      | - 1                                   |

Table 21. Results of chemical analyses of Barrigada Heights (B2d) ponding basin water.

| DATE             | Hq<br>2T1NU  | TEMP.        | TURB<br>(NTU'S) | Sp.COND.<br>umho/cm |              | 15         | \$\$   | VS       | VSS         | TD\$ | CL-      | S043 | HARD<br>NESS | CA++<br>HARD |
|------------------|--------------|--------------|-----------------|---------------------|--------------|------------|--------|----------|-------------|------|----------|------|--------------|--------------|
| 1/14             | 1.00         | 05.0         |                 |                     |              |            |        |          |             |      |          | -    |              |              |
| 2/ 3<br>2/ 5     | 7.29         | 26.8<br>25.8 | 80<br>50        | 80<br>88            | Į.           | l          |        | !        | ľ           | 1    | ļ        |      | 1 I          |              |
| 2/12             | 8.54         | 26.2         | 50              | 71                  | i            | l          | 1      | !        | 1           |      | 1        |      |              |              |
| 3/ 3             | 8.65         | 25.4         | 5.7             | 180                 | l            | l          |        |          |             |      |          |      |              |              |
| 3/ 4             | 8.25         | 26.5         | 2.4             | 169                 | l            | l          | į      | [        |             | 1    |          |      |              |              |
| 3/23             | 7.00         | 26.8         | 3.3             | 80                  | !            | l          | i      | ļ        | ļ           |      | i I      |      |              |              |
| 3/24             | 7.80         | 29.5         | 12              | 80                  | l            | l          | ĺ      | ł        | i           |      | ļ        |      |              |              |
| 3/25             | 8.30         | 27.4         | 12              | 85                  | l            | l          | !      |          | į           |      | 1        | ĺ    |              |              |
| 3/26             | 8.50         | 27.1         | 5.5             | 80                  | l            | l          | ŀ      |          |             |      | i l      |      |              |              |
| 4/ 2             | 8.00         | 29.1         | 19              | 197                 | l            | l          | )      |          | [           |      |          |      |              |              |
| 7/ 6             | 7.80         | 28.6         | 9.3             | 108                 | ļ            | 146        | 5.2    |          | i           | 141  | 4.8      |      |              |              |
| 7/19             | 7.70         | 26.3         | 22              | 90                  | Ì            | 54         | 12.4   | 61       | 1           | 42   | 4.5      |      |              |              |
| 8/10             | 7.40         | 26.8         | 2.4             | 238                 | l            | 180        | 2.6    |          | İ           | 177  | 29       |      |              |              |
| 8/24             | 3.90         | 28.8         | 28              | 81                  | <.1          | 121        | 19     |          | 7.8         | 102  | 4.4      |      |              |              |
| 9/8              | 7.50         | 27.2         | 16              | 91                  | 0.0          | 71         | 2.3    |          | 2.2         | 69   | 6.2      |      |              |              |
| 9/22             | 7.73         | 26.8         | 7.7             | 104                 | 0.0          | 90         | 7.1    |          | 3.7         | 83   | 5.5      | 1.4  |              |              |
| 10/ 6            | 5.58         | 33.2         | 2.5             | 120                 | <.1          | 139        | 6.4    |          | 5.2         | 132  | 6.1      |      |              |              |
| 10/20            | 7.58         | 28.4         | 3.0             | 107                 | ٧.1          | 49         | 1.7    | 36       | 1.5         | 47   | 6.7      |      |              |              |
| 11/ 3            | 7.89         | 28.3         | 9.8             | 92                  | ! .          | 302        | 16     | 58       | 4.8         | 285  | 5.7      |      |              |              |
| 11/17            | 27.7         | 8.2          | 114             |                     | 4.]          | 54         | 22     | 13       | 9.0         | 32   | 9.9      |      |              |              |
| 12/ 1            | 7.72         | 26.7         | 15              | 122                 | ۲.]          | 51         | 12     | 41       | 5.7         | 38   | 8.9      |      |              |              |
| 12/13            | 7.90         | 25.5         | 15              | 168                 | ۲.۱          | 140        | 16     | 84       | 4.7         | 124  | 15       | 12.6 |              |              |
| 12/30<br>1/13/77 | 7.59<br>7.95 | 27.5         | 200             | 113                 | ۲.]          | 97         | 25     | 74       | 14          | 72   | 8.4      | <1.0 |              |              |
| 1/27             | 6.85         | 27.0         | 2.4             | 106                 | <.1          | 115<br>175 | 2.7    | 38       | 2.1         | 1112 | 8.0      |      |              |              |
| 2/ 9             | 6.97         | 25.8         | 5.4             | 128                 | 0.0          | 65         | 6.9    | 96       | 1-1         | 174  | 29       |      |              |              |
| 2/23             | 7,53         | 25.5         | 3.4             | 245                 | 0.0          | 134        | 41.0 · | 20       | 4.4<br><1.0 | 58   | 8.8      |      | !            |              |
| 3/10             | 7.55         | 27.1         | 2.4             | 249                 | 0.0          | 154        | 4.0    | 28<br>31 | 1.3         | 134  | 17<br>29 |      | 64           |              |
| 3/23             | 6.79         | 26.0         | 40              | 111                 | V.0<br>  <.1 | 64         | 22     | 31       | 19          | 42   | 8.7      | 5.1  | 64<br>34     | 32           |
| 4/33             | 7.36         | 27.3         | ] 7ĭ.4          | 263                 | 3.1          | 388        | 2.0    |          | 2.0         | 386  | 19.      | J, ( | 82           | 76           |

|              | <u> </u> |       |        | <del></del> |       |       | 1     | <u></u>            |                    | <del></del> | Т       | 1    | 3    |
|--------------|----------|-------|--------|-------------|-------|-------|-------|--------------------|--------------------|-------------|---------|------|------|
| DATE         | T.ALK    | P.ALK | DO     | BOD         | COD   | POL-P | 10    | NO <sub>2</sub> -N | NO <sub>3</sub> −N | rc          | FC      | MBAS | DIL  |
| 1/1/76       | I        |       |        |             |       | .026  | ]     | .018               | . 309              | ,           |         |      |      |
| 1/ 5         |          |       | 7.0    |             |       | . 105 | !     | . 030              | . 325              | ĺ           |         | !    |      |
| 1/14         | ۱.,      |       | 7.0    |             |       | . 033 |       | .011               | a. 5               |             |         |      |      |
| 2/ 3         | 43       |       | 7.7    |             |       | .028  | 1     | .007               | . 050              |             | 1       | ĺ    |      |
| 2/ 5         | 45       | ]     | 7.7    | 1           | 1     | .018  |       | .011               | .027               |             | }       |      |      |
| 2/12<br>3/ 3 | 40<br>66 | 1     | 5.1    | 1           | 1     | . 028 |       | 0.0                | .149               |             | ì       |      |      |
| 3/ 4         | 71       | 3.2   | 3.1    | ì           | Ì     | .022  |       | 0.0                | .231               |             |         |      | 1    |
| 3/23         | 55       | 0.0   |        |             |       | . 057 |       | .020               | .041               | 1           |         |      | 1    |
| 3/24         | 42       | .5    | İ      |             |       | .050  | 1     | .022               | .277               | 1           |         | !    |      |
| 3/25         | 43       | l ii  |        |             |       | .052  | 1     | .021               | ,110               | [           |         |      |      |
| 3/26         | 40       | 1.0   |        |             |       | .029  | 1     | .006               | .031               |             |         |      |      |
| 4/ 2         | 60       | 0.0   |        |             |       | 0.0   |       | .027               | .277               |             | !       |      |      |
| 77.6         | 42       | 0.0   | 4.3    |             | 40    | .075  |       | 002                | 201                | 1           | ţ       |      |      |
| 7/19         | 40       | 0.0   | 7.1    | ا 1. عا     | 14    | 081   |       | .004               | .064               | 1           |         |      |      |
| 8/10         | 72       | 0.0   | 1.5    | 3.0         | 11    | . 003 |       | .029               | .238               |             |         |      | 1    |
| 8/24         | 44       | 0.0   | 6.2    |             | 9.5   | .063  |       | .004               | .223               | 1           |         |      | 1    |
| 9/8          | 45       | 1.0   | 6.9    | 1.8         | 30    | .036  |       | .001               | . 130              | 1           |         | ļ    | 1    |
| 9/22         | 59       | 0.0   | 3.4    | 1.2         | .4    | .031  | 1     | .002               | . 155              | i           |         | ļ.   | 1    |
| 10/ 6        | 58       | 0.0   |        | 2.5         | 34    | .003  | 1     | .004               | .030               |             |         | į.   |      |
| 10/20        | 53       | 0.0   | 1.8    | 2.1         | 23    | .042  | ĺ     | .002               | .013               |             | 1       |      |      |
| 10/22        |          |       |        |             |       | ŀ     |       | [                  | i                  | 100         | 21,800  |      |      |
| 11/ 3        | 36       | 0.0   | 7.2    | 1.8         | 20    | . 024 |       | .003               | 100.               |             |         |      | 1    |
| 11/_5        |          |       |        |             |       |       |       |                    | ŀ                  | 8,100       | 1,700   | !    | 1    |
| 11/17        | 40       | 2.8   | 5.7    | 3.1         | 28    | . 033 |       | . 007              | . 026              | 1           | 1       | 1    |      |
| 11/19        |          |       |        |             |       |       | 1     |                    |                    | <100        | 2,300   |      |      |
| 12/ 1        | 43       | 0.0   | 7.8    | 3.1         |       | .037  |       | .002               | .100               | l           | 1       | .50  |      |
| 12/ 3        |          |       |        |             |       |       | i i   |                    |                    | 13,700      | 2,200   |      |      |
| 12/13        | 52       | 0.0   | 1.7    | 2.3         | 26    | .055  | .071  | د.001              | .010               | l           |         | .35  | 1    |
| 12/15        |          | ]     |        |             |       |       |       |                    |                    | 7,000       | 1,160   |      | !    |
| 12/16        | 51       | 0.0   |        | ' i         | '     |       |       | .003               | . 14 1             | ĺ           | l i     |      |      |
| 12/29        | 45       | !     |        |             |       |       |       |                    |                    |             | TnTc    |      |      |
| 12/30        | •0       | 0.0   | 3.5    | 5.6         | 18    | .014  | .063  | .001               | . 047              |             | 1       |      |      |
| 1/13         | 46       | 0.0   | 3.3    | 2.4         | 18    | .030  | ! 1   |                    | ,020               | 1,600       | 16,500  | 20   | l    |
| 1/25         | ••       | 0.0   | 3.3    | 2.4         | '0    | .030  |       | <.001              | ,020               | 9.000       | 21,600  | .25  | 2.2  |
| 1/27         | 103      | 0.0   | 3.3    |             | 37    | .119  | .120  | .001               | .038               | 3,000       | 21,600  | . 56 | 115  |
| 2/ 8         |          |       | J. 2 , | , '         | , . , |       | . IEW |                    | 030                | !           |         | . 00 | 11.3 |
| 2/ 9         | 49       | 0.0   | 4.5    | 2.0         | 18    | 0.73  |       |                    |                    | 3,000       | 5,650   |      | i    |
|              | 49       | 0.0   | 4.5    | 2.0         | 19    | .057  | .083  | .003               | .170               |             | l i     | .15  | 1    |
| 2/22<br>2/23 | 82       | 0.0   | 1.3    | 3.5         | 4.7   |       | 245   | 0.57               |                    | 4,000       | 3,300   |      |      |
| 3/ 9         | 04       | ן טיט | 1.3    | 3.5         | 4/    | .190  | .245  | .006               | <.001              | 12 00-      |         | . 57 |      |
| 3/10         | 67       | 0.0   | 1.7    | 8.6         | 45    | .060  | ,153  | .004               | .030               | 12,000      | 15,500  |      | 1 22 |
| 3/22         | ,        | 3.0   |        | 0.0         | ""    | .000  | ,,,53 |                    | .030               | 00 nm       | 125 000 | .62  | 35   |
| 3/23         | 37       | 0.0   | 7.8    | 3.2         | 16    | .083  | .134  | .002               | .062               | 80,000      | 25,000  | .06  | 1    |
| 4/ 5         | ٠,       | 7.0   | 7.0    | 7,2         | '"    | , mon | 1.134 | .002               | . VOX              | 6,000       | 100     | .un  | 53   |
| 4/13         | 86       | 0.0   | 1.4    |             | 46    | .106  | .148  | .001               | .006               | 0,000       | 1 100   | 4.5  | ١,,  |
| 5/10         |          | *,*   | ***    | 1           | 1     | 1     | 1.140 | 1.001              |                    | 24,000      |         | .46  | 12   |
| -/ 10        |          | : 1   |        | ľ           | ı     | ļ.    | 1     | 1                  | 1                  | (44,000     | 1 1     |      | 1    |

Table 22. Results of chemical analyses of Barrigada Heights (B2w) ponding basin water.

| DATE         | pH<br>UNITS  | TEMP.        | TURB.<br>NTU | Sp.COND<br>umho/cm | SET.SOL<br>m1/1 | TS        | SS   | VS  | V\$5      | TOS       | ր.       | 50 <b>4=</b> | HARD<br>NESS | CA++<br>HARD |
|--------------|--------------|--------------|--------------|--------------------|-----------------|-----------|------|-----|-----------|-----------|----------|--------------|--------------|--------------|
| 12/ 2/75     |              |              | 8.2          |                    |                 |           |      |     |           |           | _        |              |              |              |
| 12/19        |              | 20.6         | 9.0          |                    |                 |           |      | 1   |           | 1         |          |              |              |              |
| 1/ 5         |              | 30.8         |              |                    |                 |           |      | 1   |           |           |          | ĺ            | , .          |              |
| 1/14         |              | 30.5         | 7.8          | ٠.                 |                 |           |      | 1   |           |           |          |              | 1            |              |
| 2/ 3<br>2/ 5 | 7.7          | 27.5         | 7.2          | 65                 |                 |           |      | 1   |           | ,         |          |              |              | [            |
| 2/ 5         | 7.5          | 26.4         | 112          | 69                 |                 |           |      | 1   |           | [         |          |              |              | l f          |
| 2/12         | 8.71         | 27.2         | 78           | 58                 |                 |           |      | 1   |           | ;         |          |              | ŀ            |              |
| 2/24         | 7.5          | 30.0         | 12<br>12     | 50<br>78           |                 | j         |      | 1   |           | ;         |          |              |              | 1            |
| 3/25         | 8.5<br>8.5   | 32.0<br>29.5 | 18           | 73                 |                 | i         |      | l   |           |           | ļ        |              | l            |              |
| 3/25<br>4/ 2 | 8.4          | 31.8         | 19           | 95                 |                 |           |      |     |           |           |          |              |              |              |
|              | 9.15         | 31.B         | 88           | 111                |                 | 128       | 5.8  | 1 : |           | 122       | 6.1      |              |              | l i          |
| 7/ 6<br>7/19 | 8.35         | 26.5         | 40           | 74                 |                 | 43        | 20   |     | 1         | 23        | 2.4      |              |              | [            |
| 7/26         | 8.35         | 28.5         | 15           | 52                 |                 | 13        | 10   | 1   | 2.6       | 2.9       | 0.1      | !            |              | [            |
| 8/10         | 8.65         | 28.6         | 10           | 79                 | ₹.1             | 63        | 5.1  | 2.2 | 2.0       | 58        | 6.6      | 1            |              |              |
| 8/24         | 7.92         | 29.0         | 15           | 76                 | i.i             | 84        | 7.9  | 4.0 | ,         | 76        | 13       | •            |              |              |
| 9.22         | 8.78         | 29.7         | 3.6          | 81                 | i.i             | 58        | 2.5  | 1.7 | ľ         | 56        | 5.2      | 1.0          |              |              |
| 10/ 6        | 9.10         | 31.0         | 3.0          | 87                 | i.i             | 129       | 111  |     | ,         | 118       | 3.2      |              | ļ            | [ [          |
| 10/20        | 8.85         | 29.9         | 2.4          | 145                | äi              | ้อ้า      | 2.1  | 81  | 2.1       | 79        | 12       | 1            | ļ            | li           |
| 11/ 3        | 8.30         | 30.4         | 10           | 104                | Ci i            | 320       | 31   |     | 1.2       | 317       | 3.9      | 1            | i            |              |
| 11/17        | 9.40         | 28.4         | 5.0          | 105                | ₹.1             | 62        | 12   | 10  | 6         | 50        | 5.1      | ]            | ì            | 1            |
| 12/ 1/76     | 8.34         | 27.5         | 10           | 1111               | <.1             | 40        | 9.1  | 15  | 4.5       | 31        | 4.6      | 1.2          |              | i 1          |
| 12/13        | 9.00         | 25.2         | 5.0          | 138                | <.1             | 117       | 8.0  | 82  | 6.2       | 109       | 11       | <1.0         | ì            |              |
| 12/30        | 9.25         | 29.0         |              | 101                | 4.1             | 57        | 1.9  | 37  | 1.8       | 55        | 4.3      | 13.7         |              | 1            |
| 1/13/77      | 9.60         | 29.0         | 3.0          | 111                | 0.0             | 121       | 3.5  | 38  | 2,3       | 118       | 9.8      | 1            | 1            | 1 1          |
| 1/27         | 9.10         | 32.8         |              | l                  | 0.0             | 72        | 15   | 66  | 13        | 57        | 17       |              | 1            | l i          |
| 2/ 9<br>2/23 | 9.20         | 29.5         | 2.9          | 140                | 0.0             | 50<br>106 | 5.5  | 62  | 4.8<br>10 | 50<br>106 | 11<br>18 |              |              | l i          |
| 2/25         | 8.30         | 27.8         | ,,           | 163                | 0.0             | 55        | 9.4  | D42 | 82        | 46        | 12       |              | . 28         |              |
| 3/10         | 9.58<br>7.13 | 32.7<br>26.8 | 3.7<br>7.2   | 115<br>132         | 0.0             | 56        | 16   | Į.  | 5.3       | 50        | 9.6      | Ì            | 44           | 44           |
| 3/23<br>4/13 | DRY          | 40.a         | 1.2          | '32                | ٠.٥ ١           | 90        | 1 10 | į . | 3.3       | 30        | 3.0      | l            | ""           | ""           |

| DATE   T.ALK   P.ALK   DO   BOD   COD   PO4-P   TP   NO2-N   NO3-N   TC   FC   MBAS   O11 |
|-------------------------------------------------------------------------------------------|
| 12/19                                                                                     |
| 4/13   DRY !                                                                              |

Table 23. Results of chemical analyses of Barrigada Heights (B3) ponding basin water.

| DATE                 | PH<br>(UNITS)       | TEMP.<br>°C  | TURB.<br>(NIU'S) | Sp.COND. | m1/)     | TS        | 22        | V5        | vss                                              | TDS              | l cı                                             | 504= | HARD<br>NESS | CA++  |
|----------------------|---------------------|--------------|------------------|----------|----------|-----------|-----------|-----------|--------------------------------------------------|------------------|--------------------------------------------------|------|--------------|-------|
| 1/ 5/76              | Par                 | 31.5         | 7.0              |          |          |           |           | $\top$    | <del>                                     </del> | <del>  -</del> - | <del>                                     </del> | +-   |              | 11AAQ |
| 1/14<br>2/ 3<br>2/ 5 | DRY<br>8.10<br>8.12 | 26.9<br>26.5 |                  | 69<br>72 |          |           |           |           |                                                  |                  | 1                                                |      |              |       |
| 2/12                 | 8.78                | 28.2         | 88<br>62         | 72       |          | l         | 1         | i         |                                                  | ĺ                | -                                                | l    | ! I          |       |
| 3/ 3                 | 8.65                | 26.9         | 4.8              | 86       | i        |           | 1         | ļ         |                                                  | 1                | 1                                                | Į.   | i i          |       |
| 3/ 4                 | 9.20                | 26.9<br>30.8 | 3.3              | 87<br>75 |          |           | 1         | i         | í                                                | 1                | 1                                                |      | !            |       |
| 3/23                 | 9.20                | 31.5         | 2.5              | 76       | i        |           | 1         | 1         |                                                  |                  |                                                  |      | ĺĺĺ          |       |
| 3/24<br>3/25         | 9.20                | 33.0         | 2.8              | 82       |          |           |           | i         | [                                                | 1                | i                                                | i    | !            |       |
| 3/26                 | 9.90                | 33.7<br>32.0 | 3.0              | 85       | i        |           | 1         | 1         |                                                  |                  |                                                  | J i  | [            |       |
| 4/ 2                 | 8.80                | 30.5         | 4.0              | 80<br>94 | -        |           | 1         | 1         | l                                                | ſ                | 1                                                |      |              |       |
| 7/ 6<br>7/19         | 8.40                | 33.5<br>27.2 | 9.a              | 141      | <.1      | 131       | 1,,       | ŀ         | l                                                |                  | l                                                | ! 1  | - 1          |       |
| 7/19<br>8/10         | 7.95                |              | 22               | `68      | -23 [    | 67        | 12        | i         | ı                                                | 119<br>55        | 5.3<br>3.3                                       |      | J            |       |
| 8/24                 | 8.40<br>8.50        | 8.8          | 14               | 70       | <.1      | 73        | 111       | Į         | 3.0                                              | 62               | ] 3.3                                            |      | i            |       |
| 9/8                  | 8.25                | 26.9<br>28.1 | 51               | 57<br>84 | $\leq 1$ | 152       | 26        | i         | 11                                               | 125              | 2.4                                              | [ ]  |              |       |
| 9/22                 | 9.12                | 30.1         | 2.3              | 86       | <.1      | 95<br>57  | 12        |           | 8.0                                              | 83               | 7.4                                              | 1 1  | 1            | i     |
| 0/ 6                 | 8.71                | 31.2         | 6.4              | 90       | - ii     | 117       | 6.8       | l i       | 3.2                                              | 52               | 5.2                                              |      |              |       |
| 1/20<br>1/ 3         | B.61                | 33.3         | 30               | 107      | 4.1      | 187       | 40        | 6.0       | 11.                                              | 110<br>181       | 3.2<br>6.6                                       |      | i            | - 1   |
| 1/17                 | 8.02<br>8.78        | 30.0<br>28.7 | 15               | 98       | 0.0      |           | 9.1       | 24        | 4.8                                              | 101              | 5.9                                              |      | - 1          | - 1   |
| 77 i                 | 8.19                | 27.8         | 2.5<br>3.8       | 113      | 0.0      | 71        | 4.0       | 14        | 3.0                                              | 67               | 5.9                                              | ļ Į  | - 1          |       |
| 2/13                 | 8.42                | 26.0         | 13               | 174      | 0.0      | 37        | 5.6       | .17 [     | 5.6                                              | 31               | 5.2                                              | 1.1  | 1            | - 1   |
| 2/30                 | 9.38                | 31.0         | 2.8              | 93       | 1        | 178<br>65 | 43<br>2.0 | 118<br>45 | 32                                               | 135              | 9.9                                              | <1.0 |              |       |
| /12/77               | DRY                 |              | 1                |          | `'       |           | 2.0       | 45        | 2.2                                              | 63               | 3.8                                              | 1    | - 1          | i     |
| 2/23<br>1/10         | DRY<br>DRY          | - 1          | 1                |          | - 1      |           | 1         | - 1       | ĺ                                                | - 1              | - 1                                              |      |              | - 1   |
| /23                  | 6.96                | 25.0         | این              |          |          | i         | I         |           | - 1                                              |                  | - 1                                              | - 1  |              | - 1   |
| 7 1                  | 0.30                | 26.8         | 6.5              | 124      | 0.0      |           | 5.7       | ļ         | - 1                                              | - 1              | 8.9                                              | - 1  | 37           | 36    |

| DATE                                    | T.ALK                      | P.ALK                    | 50                       | BOD         | COD                     | P04-P                       | TP           | 402-H                       | NO3-N                        | тс       | FC         | MBAS | OIL        | 1 |
|-----------------------------------------|----------------------------|--------------------------|--------------------------|-------------|-------------------------|-----------------------------|--------------|-----------------------------|------------------------------|----------|------------|------|------------|---|
| 12/ 2/75<br>1/ 1/76<br>1/ 5<br>1/14     | DRY                        |                          | 14.7                     |             |                         | 0.0<br>-022<br>-035         |              | .005<br>.008<br>.006        | .085                         |          |            |      | 1          | - |
| 2/ 3<br>2/ 5<br>2/12<br>3/ 3<br>3/ 4    | 41<br>46<br>45<br>44<br>43 | .8<br>6.9<br>8.5         | 8.4<br>8.0<br>9.7        |             |                         | .009<br>.012<br>.012<br>0.0 |              | .002<br>.006<br>0.0<br>0.0  |                              | :        |            |      |            |   |
| 3/23<br>3/24<br>3/25<br>3/26<br>4/ 2    | 42<br>42<br>43<br>40       | 12<br>13<br>18<br>16     |                          |             |                         | .003<br>.007<br>0.0<br>0.0  |              | 0.0<br>.002<br>.003         | 0.0<br>.051<br>.003          |          |            |      |            |   |
| 7/ 6<br>7/19<br>8/10<br>8/24            | 43<br>67<br>32<br>31<br>37 | 2.3<br>2.5<br>0.0<br>0.0 | 7,9<br>6.1<br>7.1<br>6.8 | 1.4         | 8.2<br>15<br>9.4<br>6.1 | 0.0<br>6.0<br>.27<br>.007   | <u> </u><br> | .001<br>.001<br>.004<br>0.0 | .144<br>.004<br>.008<br>.004 |          |            | ,    |            |   |
| 9/ 8<br>9/22<br>9/24<br>10/ 6<br>10/13  | 47<br>50<br>52             | 0.0<br>5.9<br>2.5        | 6.6<br>6.7               | 1.2         | 23<br>1.6<br>16         | 900.<br>800.<br>100.        |              | .001<br>0.0<br><.001        | .162                         | 760      |            |      |            |   |
| 10/20<br>10/22<br>11/ 3<br>11/ 5        | 60<br>40                   | 0.0                      | 11.5<br>7.4              | 4,4         | 1B<br>3.8               | .017                        |              | .001                        | . 133<br>. 159               | 50<br>20 | 3,320      |      | <br> -<br> |   |
| 11/17<br>11/19<br>12/11<br>12/13        | 49<br>54                   | 0.0                      | 7.3<br>5.1               | .9<br>3.6   | 14<br>7.1               | .002<br><.001               |              | 0.0                         | .007                         | 60<br>90 | 100<br>30  |      |            |   |
| 12/13<br>12/15<br>12/30<br>1/12<br>2/23 | 76<br>46<br>0RY            | 7.1                      | 9.9                      | >6.6<br>2.5 | 38<br>11                | .119<br>.004                | .173<br>.029 | 0.0<br>0.0                  | .003                         | 0        | 0<br>1,230 |      |            |   |
| 2/23<br>3/23<br>4/13<br>5/17            | DRY<br>DRY<br>DRY<br>DRY   | 0.0                      | 7.8                      | 3.0         | 12                      | .016                        | .050         | <.001                       | .010                         |          |            | -03  |            |   |

Table 24. Results of Chemical analyses of Latte Heights (L2) ponding basin water.

| DATE         | p∺<br>UNITS  | TEMP.        | TURB.<br>(NTU'S) | Sp.COND.<br>µmho/cm | SET.SOL. | TS  | SS   | ٧s       | VSS        | TDS  | CL- | S04=    | HARD<br>NESS | CA++<br>HARD |
|--------------|--------------|--------------|------------------|---------------------|----------|-----|------|----------|------------|------|-----|---------|--------------|--------------|
| 12/ 2/ 75    |              |              | 11               |                     |          |     |      | <u> </u> |            |      |     |         |              |              |
| 1/14/76      |              |              | 5.8              |                     | 1 1      |     | 1    | l        |            |      | 1   |         | 1            |              |
| 2/ 3         | 8.10         | 26.9         |                  | 69                  | 1        |     | i    | l        |            |      | 1   |         | 1            |              |
| 2/ 5         | 8.79         | 29.1         | 7.9              | 76                  | 1 1      |     | l    | l        | ľ          |      | !   |         | 1            |              |
| 2/12         | 8.58         | 28.5         | 78               | 56                  |          |     | l    | l        | 1          |      |     | 1       |              |              |
| 3/ 3         | 9.95         | 33.9         | 5.8              | 117                 | !        |     | l    | l        |            | ļ    | i   |         |              |              |
| 3/ 4         | 9.40         | 34.5         | 5.2              | 104                 | l 1      |     | l    | l        | [          |      |     |         |              |              |
| 3/23         | 9.60         | 34.7         | 8.8              | 93                  |          |     | l    | l        |            | 1    | 1   |         |              | i            |
| 3/24         |              | 24.6         | 8.6              | 83                  |          |     | l    | l        | •          | 1    | 1   |         |              |              |
| 3/25         | 10.1         | 34.6         | 9.6              | 104<br>84           |          |     | l    | l        |            |      |     |         |              |              |
| 3/26         | 9.80<br>10.2 | 32.2         | 9,2<br>10.0      | 133                 |          |     | l    | l        | 1          | ļ    |     |         |              |              |
| 4/ 2         | 8.95         |              | 10.0             | 133                 | j '      |     | l    | l        |            | !    |     |         |              |              |
| 7/16         | 10.00        | 40.0<br>27.0 | 13               | 103                 | ł!       | 78  | 8.2  | l        |            | 70   | 4.4 | ļ       |              |              |
| 7/19         |              | 31.9         | 4.9              | 89                  | [        | 17  | 2.8  | ļ        | 2.8        | 14   | 1.2 | ļ       |              | !            |
| 7/26<br>8/10 | 8.90<br>9.75 | 32.7         | 4.6              | 129                 | !        | 117 | 12.0 | ļ        | 10.5       | 105  | 9.3 |         |              | !            |
| B/24         | 9.73         | 32.9         | 14               | 79                  | ! '      | 90  | 15   | ł        | 111        | 74   | 3.2 | ļ       |              |              |
| 9/8          | 8.20         | 30.5         | 25               | 99                  | ۲.1      | m   | 20   | i        |            | 91   | 8.6 | 1       | 1            |              |
| 9/22         | 9.45         | 31.7         | 6.6              | 85                  | 1 7.5    | 86  | 25   | !        | 14         | 61   | 3.5 | 2.7     |              | ļ            |
| 10/ 6        | DRY          | 31.3         | 0.0              | 65                  | `.'      | Β¢  | 153  | 1        | j''        | 1 01 | 3.2 | • • • • |              |              |
| 10/20        | DRY          |              |                  |                     | J        | ļ   | 1    | l        |            |      | ŀ   | 1       |              |              |
| iĭ/°3        | 9.78         | 36.2         | l a              | 83                  | 0.0      |     | 5.0  | 13       | 2.9        |      | 4.1 | ]       | )            | l            |
| j 1/1/       | 9.65         | 32.4         | .8<br>2.4        | 83<br>111           | à.ō      | 56  | 5.0  | 13<br>30 | 2.9<br>3.5 | 61   | 5.9 | 1       | 1            |              |
| 12/ 1        | 9.51         | 32.4         | 4.4              | 119                 | ۱,>      | 52  | 8.4  | l        | 8.4        | 44   | 5.7 | 1.1     |              | 1            |
| 12/30        | 9.68         | 34.5         | 2.8              | 92                  | 0.0      | 80  | 10   | 62       | 6.4        | 70   | 5.1 | 1       | 1 3          | 1            |
| 1/13/77      | 9.62         | 36.0         | 1.6              | 100                 | ₹.1      | 133 | 18   | 76       | 4.0        | 115  | 9.6 | l       | 1 :          | 1            |
| 1/27         | DRY          | 1            |                  | 1                   |          |     | 1    | l        | 1          |      |     | 1       |              |              |
| 2/ 9         | 8.10         | 27.9         | 7.9              | 246                 | ۲,1      | 191 | 12   | ļ        | 6.5        | 179  | 34  | 1       |              | 1            |
| 2/23         | DRY          | 1            |                  |                     | , ,      |     |      | 1        | 1          | 1    | l   | 1       | ! .          | ]            |
| 3/23         | 5,80         | 29.5         | 7.3              | 131                 | ا ١٠٠    | 45  | 10   | 1        | 5.4        | 35   | 11  | ]       | 37           | 34           |

| DATE                                                                                                                                                  | T.ALK                                                                                                                      | P. ALK                                                      | ' סמ                               | 800             | 003                        | PO4-P                                                                                        | TP           | NO2-N                                                                              | N03-N                                                                                                                       | T¢                | FC                    | MBAS | OIL |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|-----------------|----------------------------|----------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|------|-----|
| 2/ 2/75<br>1/ 1/76<br>1/ 1/76<br>1/14<br>2/ 3<br>2/ 5<br>2/12<br>3/ 3<br>3/ 4<br>3/23<br>3/24<br>3/25<br>3/25<br>3/26<br>8/10<br>8/10<br>8/10<br>8/10 | 41<br>41<br>41<br>41<br>41<br>41<br>41<br>42<br>43<br>44<br>45<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 1.0<br>18<br>24<br>28<br>13<br>22<br>14<br>27<br>5.5<br>9.5 | 14.0<br>11.5<br>8.2<br>8.6<br>12.5 | 2<br>1.1<br>2.6 | 76<br>13<br>11<br>15<br>41 | .034<br>.036<br>.070<br>.019<br>.019<br>.012<br>.007<br>.007<br>.007<br>.004<br>.030<br>.016 |              | .002<br>.033<br>0.0<br>0.0<br>.011<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | .006<br>.350<br>.520<br>.108<br>0.0<br>.003<br>.146<br>.011<br>.103<br>.040<br>.040<br>.011<br>.011<br>.011<br>.005<br>.149 |                   |                       |      |     |
| 9/22<br>9/24<br>10/6<br>10/20<br>10/22<br>11/3<br>11/5                                                                                                | DRY<br>DRY<br>34                                                                                                           | 7.5<br>12<br>13                                             | 9.4<br>14.6                        | 2.0             | 8.1<br>14                  | .031<br>.001                                                                                 |              | .002<br>0.0                                                                        | .013<br>.021<br>0.0                                                                                                         | 290<br><20<br><10 | <b>4,360</b><br>0     |      |     |
| 11/19<br>12/1<br>12/3<br>12/13<br>12/15<br>12/15                                                                                                      | 53<br>DRY                                                                                                                  | 12                                                          | 12.9                               | 5.2             | 7.9                        | .007                                                                                         |              | 0.0                                                                                | .006                                                                                                                        | 50<br>30          | 6<br>1<br>59<br>9,100 |      |     |
| 12/30<br>1/ 3/77<br>1/12<br>1/13                                                                                                                      | 38                                                                                                                         | 7.2                                                         | 12.8<br>14.8                       | 2.9             | 16<br>16                   | 0.0<br>.084<br>.003                                                                          | .081         | <.001<br>0.0<br>0.0                                                                | <.001<br>,106<br>.002                                                                                                       | 7,900             | 15,200                | .84  |     |
| 1/27<br>2/ 9<br>2/23<br>3/23<br>4/13<br>5/17                                                                                                          | DRY<br>47<br>DRY<br>39<br>DRY<br>DRY                                                                                       | 1.5<br>0.0                                                  | 7.9<br>7.6                         | 4.3             | 60<br>3.7                  | .188<br>.090                                                                                 | ,211<br>,139 | .006<br>.001                                                                       | .124                                                                                                                        |                   |                       | .58  | 7.9 |

Table 25. Results of chemical analyses of Perez Acres ponding basin water.

| CATE    | pH<br>(UNITS) | TEMP. | TURB.<br>(NTU) | Sp. COND. | SET. SOL. | TS" | 22  | VS | VSS | TDS | CT-   | S04= | HARD<br>NESS | CA++<br>HARD |
|---------|---------------|-------|----------------|-----------|-----------|-----|-----|----|-----|-----|-------|------|--------------|--------------|
| 7/ 6/76 | 8.60          | 34.3  | 70             | 146       | ۲. >      | 186 | 94  | Τ  | 1   | 92  | 8.5   |      |              |              |
| 7/19    |               | 27.9  | 40             | 102       | ۱. >      | 87  | 24  |    | i   | 63  | 4.9   |      | l            |              |
| 7/26    | 8.25          | 31.3  | 19             | 76        | ∢.1       | 52  | 12  | İ  | 6.4 | 39  | .8    |      | 1            | :            |
| 8/10    | 9.10          | 30.9  | 19             | 87        | ۱. >      | 342 | 23  |    | 8.5 | 320 | 5.1   |      |              |              |
| 8/24    | 8.95          | 31.5  | 22             | 52        | ۱. >      | 175 | 11  |    | 5.5 | 164 | 3.2   | i    |              |              |
| 9/ 8    | 8.70          | 29.0  | 14             | 63        | ۱, »      | 392 | 28  | ĺ  | 13  | 364 | 6.4   | ĺ    |              |              |
| 9/22    |               | 29.0  | 14             | 66        | < .1      | 334 | 30  | 1  | 6.8 | 314 | 5.0   |      |              | ŀ            |
| 10/ 6   | 8.58          | 28.3  | 12             | 68        | ۱. >      | 372 | 30  |    | 11  | 353 | 6.1   |      |              |              |
| 10/20   | 9.90          | 32.7  | 65             | 94        | ٠.١ ×     | 836 | 54  | 72 | 21  | 782 | 9.1   | 1    | •            |              |
| 11/ 3   | 8.50          | 32.3  | 12             | 73        | ₹.1       | 379 | 14  | 69 | 6.8 | 365 | 7.5   | !    |              |              |
| 11/17   | 10.35         | 30.6  | 15             | 98        | ٠,١       | 56  | 18  | 56 | 16  | 38  | 6.3   |      |              |              |
| 11/29   | 9,45          |       |                |           |           |     |     | l  |     | ļ   |       |      | [            |              |
| 12/ 1   | 9.72          | 29.6  | 20             | 78        | ۱, ۶      | 85  | 10  | 37 | 9.4 | 75  | 5.6   | 1.9  | ĺ            |              |
| 12/13   | 9.07          | 25.5  | 18             | 92        | ₹.1       | 134 | 37  | 89 |     | 97  | 8.3   | <1.9 |              |              |
| 12/30   | 9.15          | 28.0  | 8.4            | 72        | 1, >      | 54  | 9.5 | 31 | 5.6 | 44  | 4.5   | <1.0 |              |              |
| 1/13/77 | 9.88          | 28.6  | 14             | 102       | ∢ .1      | 118 | 24  | 79 | 13  | 94  | 8.4   |      |              |              |
| 1/27    | 9.40          | 31.2  |                |           | ا, >      | 75  | 28  | 42 | 14  | 47  | ก     |      |              |              |
|         |               | 27.1  | 15             | 109       | ٠.١       | 103 | 36  |    | 20  | 68  | 12    | l    |              |              |
| 2/ 9    | 9.00          |       | '°             |           |           | -   |     | 63 | 11  | 132 | 12    |      |              |              |
| 2/23    | 9.60          | 29.6  |                | 122       | .0        | 145 | 13  |    |     |     | I - I |      | 30           | - 1          |
| 3/10    | 9.70          | 31.5  | 15             | 135       | 1, >      | 96  | 17  | 78 | 17  | 79  | 15    |      |              |              |
| 3/23    | 9.00          | 29.3  | 5.9            | 113       | ۱. ۲      | 74  | 13  |    | 13  | 61  | 12    | 2.6  | 29           | 27           |
| 4/13    | 9.00          | 30,6  | 8.0            | 135       | ۲.۱       | 306 | 15  |    |     | 291 | 111   |      | 34           | 28           |

| DATE                                 | T,ALK    | P.ALK         | 00                 | 800        | coo       | P0 <sub>4</sub> -P | TP.  | N0 <sub>2</sub> -N | NO <sub>3</sub> -N | TC      | FC   | MBAS     | OIL |
|--------------------------------------|----------|---------------|--------------------|------------|-----------|--------------------|------|--------------------|--------------------|---------|------|----------|-----|
| 1/ 6/76                              | 70       | 5.4           | 6.9                |            | 40        | 0.0                |      | .014               | .219               |         |      |          |     |
| 7/19<br>7/26                         | 41<br>36 | 4.5<br>2.4    | 7.1                | 2.0<br>1.6 | 20<br>4.9 | .073               |      | .084<br>.206       | .504<br>.150       |         |      |          |     |
| 3/10                                 | 28<br>29 | 2.8           | 10.2<br>9.3<br>7.4 | 2.4        | 12        | .008               | i    | <.001              | .081               |         |      |          |     |
| 8/24<br>9/ 8                         | 29       | 3.8           | 7.4                | 1 1        | B.5       | <.001<br>.015      |      | 0.02               | <.0013<br>.004     |         |      |          | Į . |
| 7/22                                 | 34<br>38 | 1.8           | 7.2                | 1.1        | 17<br>12  | .004               |      | <.001              | .004               | 4,610   |      | Ì        | 1   |
| 0/ 6                                 | 29       | 1.4           | 3.3                |            | 37        | .006               |      | .001               | .142               | 200     |      | 1        | ł   |
| 0/13<br>0/20                         | 36       | 14            | 9.5                | 4.1        | 27        | .001               | 1    | 0.0                | .083               | 200     | 17   | 1        |     |
| 0/20<br>0/22                         | 30       | \' <b>"</b> ! | 9.3                | 7-'        | 27        | , , , , ,          |      | V.V                | ,005               | 4,000   | 710  | 1        |     |
| 1/ 3                                 | 31       | .5            | 8.1                | 1.8        | .6.2      | .025               |      | .601               | .002               |         |      | 1        | İ   |
| 1/ 5                                 |          |               | l                  | ١          |           | ١                  |      |                    |                    | 630     | 430  | }        | 1   |
| 1/17                                 | 33       | 19            | 12.0               | 3.5        | 23.4      | .004               |      | .003               | .002               | 20      | <10  | 1        |     |
| 1/19<br>1/29                         | 28       | 7.8           | ì                  | ĺ          | l         |                    | }    |                    | ĺ                  |         | 114  | <u> </u> | Ì   |
| 2/ 1                                 | 30       | 9.7           | 10.1               | 2.2        | 10        | 0.0                |      | .002               | .108               |         |      | .05      | 1   |
| 2/ 3                                 | 1        | 1             | 7.3                | 2.5        | 21        | .022               | .036 | <.001              | .093               | 500     | 60   | .17      |     |
| 2/13<br>2/15                         | 36       | 3.0           | 1 /.3              | 2.3        | "         | ,022               | .036 | \·                 | .093               | 20      | 670  | '''      |     |
| 2/29                                 |          |               | İ                  |            | 1         |                    |      |                    |                    | "       | 300  |          |     |
| 2/30                                 | 33       | 7.6           | 8.7                | 2.9        | 7.9       | .006               | .068 | 0.0                | .001               |         |      | .15      |     |
| 1/ 9/77                              |          | 1             |                    | 1          |           | .006               |      | .001               | .415               | 4.700   | 500  | 1        |     |
| 1/12<br>1/13                         | 35       | ho            | 9.4                | 3.2        | 26        | -012               |      | <.001              | .108               | 4,700   | 300  | -10      | 2.8 |
| 1/25                                 | 1 .      |               |                    | "          |           | i                  | l    | i                  | i                  | 0       | 0    |          | 1   |
| 1/27                                 | 36       | 15            | 10.5               | !          | 29        | .020               | .051 | .004               | .004               | 700     | 180  | .33      | 1   |
| 2/ 8<br>2/ 9<br>2/22                 | 35       | 9.5           | 9.1                | 5.5        | 33        | .008               | .046 | .004               | .024               |         | 1    | .16      | 0   |
| Ž/2Ž                                 | 1        | 1             | [                  |            | 1         |                    |      |                    |                    | 200     | <10  | ١,,      | ļ   |
| 2/23<br>3/ 9                         | 36       | 22            | 11.4               | 4.9        | 27        | .005               | .034 | .004               | .029               | k10.000 | 656  | .15      | 1   |
| 3/10<br>3/22                         | 32       | 18            | 12.6               | 8.6        | 33        | .009               | .087 | 0.0                | .005               | -       | 1    | . 12     | 1   |
| 3/22                                 | 1        | ha            | 10.0               | 7.3        | 32        | .003               | .064 | ٥.٥                | .002               | 9,000   | 680  | .34      | 1   |
| 3/23<br>4/ 5<br>4/13<br>5/11<br>5/17 | 32       | 1             | 1                  | '.3        | ļ         | ļ                  | 1    |                    |                    | 9,000   | fnfc | ''       | 1   |
| <u>4/13</u>                          | 34       | 7.0           | 7.7                | ļ          | 24        | .017               | .058 | .003               | .003               | 10,000  | 600  | 1        | 1   |
| 5/17<br>5/17                         | ŀ        | 1             | 1                  | 1          | ı         | 0.0                | .069 | .001               | .002               | 10,000  | 400  | 1        | 1   |

MOTE: In mg/1 unless otherwise noted.

Table 26. Results of chemical analyses of Mariana Terrace ponding basin water.

| DATE     | pH<br>UNITS | TEMP. | TURB<br>(NTU'S) | Sp.COND.<br>umho/cm | SET. SOL | TS   | 5\$_ | VS  | VSS | TDS  | a-  | 504- | HARD- | CA+ |
|----------|-------------|-------|-----------------|---------------------|----------|------|------|-----|-----|------|-----|------|-------|-----|
| 12/ 2/75 |             | Į     | 12              | }                   |          |      |      |     | Ī   |      |     |      |       |     |
| 7/ 6/76  | 8.00        | 22.9  | 2.8             | 333                 | ₹ ,1     | 216  | 5.0  |     |     | 211  | 10  |      |       |     |
| 7/19     |             | 27.0  | 30              | 123                 | ٠.1      |      | 26   | 89  |     | 97   | 5.1 | l    |       |     |
| 8/10     | 7.75        | 30.0  | 14              | 159                 | < .1     | 1056 | 8.8  |     | 6.8 | 1048 | 7.6 |      | i l   |     |
| 8/24     | 7.15        | 30.0  | 14              | 116                 | ₹.3      | 467  | 14   | ļ   | e.s | 453  | 4.9 |      |       |     |
| 9/8      | 7.15        | 28.9  | 8.4             | 152                 | .45      | 150  | 7.0  | l   | 7.0 | 143  | 10  |      |       |     |
| 9/22     | 1           | 28.1  | 6.4             | 176                 |          | 180  | 13   |     | 9.3 | 167  | 6.9 | 2.4  |       |     |
| 10/6     | 8,19        | 29.3  | 18              | 74                  | 1.0      | 198  | 40   |     | 18  | 158  | 21  |      |       |     |
| 10/20    | 7.59        | 31.0  | 4.6             | 251                 | ۲.۱      | 297  | 26   | 127 | 26  | 270  | 14  |      |       |     |
| 11/ 3    | 7.23        | 30.5  | 15              | 97                  | . < .1   | ļ    | 20   | 64  | 11  |      | 5.8 |      |       |     |
| 11/17    | 7.32        | 29.7  | 33              | 252                 | ۲.۱      | 171  | 5.6  | 85  | 5.6 | 165  | 10  | 1 1  | ]     |     |
| 12/ 1    | 7.20        | 29.4  | 25              | 525                 | < .1     | 176  | 6.5  | 37  | 6.5 | 170  | 32  | <1.0 | ļ     |     |
| 12/13    | 7.38        | 26.5  | 10              | 250                 | 3.0      | 262  | 58   | 104 | ì   | 204  | 18  | <1.0 |       |     |
| 2/30     | 7.25        | 28.0  | 5.4             | 416                 | 1.0      | 277  | 31   | 96  | 31  | 246  | 30  | !    |       |     |
| 1/13/77  | 7.68        | 26.5  | 1.4             | 271                 | 3.0      | 238  | 8.7  | 53  | 6.5 | 249  | 15  |      |       |     |
| 1/27     | 6.60        | 26.9  |                 | <b>!</b>            | .1       | 309  | 5.3  | 63  | 4.6 | 304  | 27  |      | ]     |     |
| 2/ 9     | 7.22        | 26.2  | 3.8             | 195                 | .1       | 136  | 11   |     | 7.6 | 125  | 14  |      |       |     |
| 2/23     | B. 40       | 27.7  |                 | 573                 | .1       | 364  | 7,2  | 112 | 6.6 | 357  |     |      |       |     |
| 3/10     | 7.78        | 33.6  | 4.0             | 501                 | < .1     | 288  | 4.1  | 40  | 3.5 | 284  | 23  |      | 228   |     |
| 3/23     | 7.29        | 28.0  | 6.6             | 616                 | ٠.١      | 338  | 4.1  |     | 3.9 | 334  | [   | 3.8  | 259   | 255 |

| DATE     | T. ALK | P.ALK | DO   | 800   | COD     | P04-P | т-Р   | NO2-N | N03-N | τc      | FC      | MBAS | 014 |
|----------|--------|-------|------|-------|---------|-------|-------|-------|-------|---------|---------|------|-----|
| 12/ ]/75 |        |       | 18.2 |       |         | .000  |       | .003  | .006  |         |         |      | 1   |
| 7/ 6/76  | 112    | 0.6   | 11.1 | ł     | 26      | .000  | 1     | .005  | .204  | •       |         |      | 1   |
| 7/19     | 52     | 2.5   | 7.7  | 0.9   | 18      | .061  | 1     | .011  | .298  | 1       |         |      |     |
| 8/10     | 72     | 0.0   | 3.9  | 4.5   | 8.7     | .009  | 1     | 0     | .007  | 1       |         | ļ    | 1   |
| 8/24     | 67     | 0.0   | 2.4  | i     | 10      | .022  |       | .002  | .141  | 1       |         | ŀ    | 1   |
| 9/8      | 80     | 0.0   | 0.5  | 2.9   | 27      | .011  | į.    | [0    | .004  | 1       | E i     |      | 1   |
|          | 105    | 0.0   | 1.2  | 3.2   | 14      | .024  | 1     | <.001 | . 120 | 3,240   | [       |      | ı   |
| 0/ 6     | 32     | 0.0   |      | 4,9   | 23      | .003  |       | .006  | . 153 | [ 0     | TNTC    |      | 1   |
| 0/13     | l      |       |      | l     | 1       | į.    |       | 1     | ]     | ) 0     | TNTC    |      |     |
| 0/20     | 137    | 0.0   | 8.9  | 8.4   | 28      | .021  |       | <.001 | <.001 | i       |         |      |     |
| 0/22     | l      |       |      | i     |         | ì     |       | 1     |       | <20     | 19,800  |      | 1   |
| 1/ 3     | 46     | 0.0   | 5.0  | 5.0   | 12      | .147  |       | .020  | .289  |         |         | 1    | ļ   |
| 1/ 5     | j ,    |       |      | 1     |         | l     | f     | ł     |       | 1,800   | 1,000   |      | 1   |
| 1/17     | 118    | D.O   | 6.1  | 2.8   | 18      | .020  | ł     | col   | .053  |         | ĺ .     |      | 1   |
| 1/19     |        |       |      |       | •       | l     | [     | i     | ı     | 3,300   | 800     |      | 1   |
| 2/ 1     | 227    | 0.0   | 0.5  | 4.4   | 9.6     | .035  |       | .011  | .045  | ł :     |         |      |     |
| 2/ 3     |        |       |      | ŀ     |         | ł     |       |       |       | 246,000 | 24,800  |      | 1   |
| 2/13     | 99     | 0.0   | 0.5  | 3.7   | 23      | . 024 | . 064 | .011  | .040  |         |         | .21  | 1   |
| 2/15     |        | l     |      | !     |         |       |       |       |       | 16,000  | 3,400   |      |     |
| 2/29     |        | - (   |      |       |         |       | ŀ     | f .   | 1     |         | 6,900   |      | 1   |
| 2/30     | 152    | 0.0   | 1.2  | 4.7   | 11      | .060  | ,102  | .034  | . 436 |         |         | .19  | 1   |
| 1/12/77  |        | - 1   |      |       | ļ .     |       | l     | ļ     | !     | 2,000   | 14,200  |      | 1   |
| 1/13     | 107    | 0.0   | 1.1  | 3.0   | 31      | .048  | . 330 | .082  | .310  | [ ]     |         |      |     |
| 1/25     |        |       |      |       | l       |       | l     |       | ł     | 11,000  | 5,700   |      |     |
| 1/27     | 236    | 0.0   | 1.0  |       | 32      | .060  | .053  | .054  | .434  | 1 1     |         | . 27 |     |
| 2/8      |        |       |      |       | 1       | l .   | l     |       | ł     | 23,000  | 32,000  |      | 1   |
| 2/9      | 73     | 0.0   | 3.0  | 2.4   | 28      | .090  | .111  | .018  | .113  | i I     |         | . 24 | 7.6 |
| 2/22     |        |       |      |       | i !     | [     | l     |       | i     | TNTC :  | 170,000 |      | 1   |
| 2/23     | 306    | 0.0   | 0.0  | 11    | 22      | . 324 | .368  | .095  | .402  |         |         | .83  | 1   |
| 3/9      |        |       |      | Ī     |         |       | l     |       |       | 60,000  | <10,000 |      | 1   |
| 3/10     | 224    | 0.0   | 10.8 | 4.0   | 4.2     | .014  | . 065 | . 239 | 1.54  | '       | · •     | . 18 | 24  |
| 3/22     |        |       |      | i     |         |       | l     |       |       | 70,000  | 1,000   |      | 1   |
| 3/23     | 258    | 0.0   | 4.9  | 2.3   | 10.5    | .011  | . 170 | . 218 | 2.04  | '       |         | . 11 | 12  |
| 4/5      |        |       |      |       |         |       | ł     |       |       | <10,000 | <1,000  |      |     |
| 4/13     | MATE   | LEVE  | 700  | LON T | O SAMPI | LE .  |       | l     |       | -       |         |      | 1   |
| 5/11 ]   | 1      | - 1   |      |       |         |       |       |       |       | 930,000 | 2,000   |      | 1   |
| 5/17     |        | ŧ     |      | l     | I       | .373  | .745  | .017  | .042  |         | ·       |      | 1   |

Table 27. Results of chemical analyses of Airport Road drainage ditch water.

| 35.4<br>32.8<br>32.0<br>33.0<br>31.0 | 82<br>11.0<br>9.0<br>6.0                                             | 174<br>88<br>91                                                              | <.1                                                                                    | 184                                                                                                         | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | 10.0                                     |                                          |                                          |                                          |                                          |                              |
|--------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------|
| 32.0<br>33.0<br>31.0                 | 9.0                                                                  |                                                                              | أدا                                                                                    |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                        | 10.0                                     | 175                                      | 8.8                                      | !                                        |                                          |                              |
| 33.0<br>31.0                         |                                                                      | 61                                                                           |                                                                                        | 116                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ľ                                        | -4.0                                     | 112                                      | 7.0                                      |                                          |                                          |                              |
| 31.0                                 | 6.0                                                                  | y                                                                            |                                                                                        | 200                                                                                                         | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | İ                                        | -7.8                                     | 192                                      | 7.0                                      |                                          |                                          |                              |
|                                      |                                                                      | 98                                                                           |                                                                                        | 53                                                                                                          | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 4.0                                      | 47                                       | 5.0                                      | :                                        |                                          |                              |
|                                      | 22.0                                                                 | 197                                                                          |                                                                                        | 275                                                                                                         | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | -6.0                                     | 258                                      | 16.0                                     |                                          |                                          |                              |
| 35.0                                 | 40                                                                   | 193                                                                          | <.1                                                                                    | 379                                                                                                         | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150.0                                    | 17.0                                     | 362                                      | 17                                       |                                          |                                          |                              |
| l                                    | ļ                                                                    |                                                                              |                                                                                        | ŀ                                                                                                           | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | ŀ                                        |                                          |                                          |                                          |                                          |                              |
| 36.0                                 | 8.0                                                                  | 1.0                                                                          | ۲.۱                                                                                    |                                                                                                             | [11.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.0                                     | 6.0                                      |                                          | 11                                       |                                          |                                          |                              |
| 31.0                                 | 8.0                                                                  | 165                                                                          | <.1                                                                                    | 302                                                                                                         | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.0                                     | 8.0                                      | 293                                      | 9.0                                      |                                          |                                          | 1                            |
| 33.0                                 | 4.0                                                                  | 150                                                                          | <.1                                                                                    | 461                                                                                                         | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75.0                                     | 5.4                                      | 456                                      | 11                                       | <1.0                                     |                                          | 1                            |
|                                      |                                                                      |                                                                              |                                                                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                          |                                          |                                          |                                          |                                          | 1                            |
|                                      |                                                                      |                                                                              |                                                                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                          |                                          |                                          | 3.7                                      |                                          | 1                            |
|                                      | 20                                                                   | 163                                                                          | -                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                          |                                          | 12                                       |                                          |                                          | ı                            |
|                                      |                                                                      |                                                                              |                                                                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 286                                      |                                          |                                          | 1                                        |                                          |                                          | ı                            |
|                                      | 17                                                                   |                                                                              |                                                                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ١.,                                      |                                          |                                          |                                          |                                          |                                          |                              |
|                                      | 7.0                                                                  |                                                                              |                                                                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                          |                                          |                                          |                                          | 7.5                                      | ĺ                            |
|                                      |                                                                      |                                                                              |                                                                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90                                       |                                          |                                          |                                          |                                          |                                          |                              |
|                                      |                                                                      |                                                                              |                                                                                        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l                                        |                                          |                                          |                                          | 1.4                                      |                                          | 43<br>81                     |
|                                      | 26.0<br>29.0<br>29.0<br>29.0<br>24.0<br>33.0<br>34.0<br>34.0<br>31.0 | 29.0 20<br>29.0 20<br>29.0 21<br>33.0 17<br>33.0 7.0<br>34.0 7.0<br>34.0 8.0 | 29.0 5.0 189<br>29.0 20 163<br>29.0 17 219<br>33.0 235<br>34.0 7.0 239<br>34.0 8.0 182 | 29.0 20 189 <.1<br>29.0 20 163 .1<br>29.0 17 219 .1<br>33.0 235 0.0<br>34.0 7.0 239 <.1<br>34.0 8.0 182 <.1 | 29.0   5.0   189   <.1   135   161   179.0     189   <.1   189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     189     1 | 29.0         5.0         189         <.1 | 29.0         5.0         189         <.1 | 29.0         5.0         189         <.1 | 29.0         5.0         189         <.1 | 29.0         5.0         189         <.1 | 29.0         5.0         189         <.1 | 29.0     5.0     189     <.1 |

| DATE    | T.ALK | P.ALK | DO   | BOD  | C00 | P04-P | מז    | NO <sub>2</sub> -N | NO3-N | TC       | FC    | RBAS  | 011  |
|---------|-------|-------|------|------|-----|-------|-------|--------------------|-------|----------|-------|-------|------|
| 8/10    | 65.0  | 0.0   | 4.9  | >9.3 | 124 | .018  |       | 0.0                | .083  |          |       |       |      |
| 8/24    | 43.0  | 0.0   | 3.5  |      | 46  | .056  |       | 0.0                | .004  | •        |       | i ł   |      |
| 9/8     | 45.0  | 7.0   | 5,4  | 5.6  | 43  | .053  |       | .002               | .139  | i l      |       | [ ]   |      |
| 9/22    | 56.0  | 5.0   | 6.9  | 3.7  | 7.9 | .027  |       | 0.0                | .025  | 1 0      | i     | . 1   |      |
| 10/6    | 78.0  | 0.0   | i    | 13د  | 161 | 1.30  |       | .005               | .153  | 1        |       |       |      |
| 10/13   | l     |       | l    | i    |     |       |       |                    | ŀ     | 70       | 0     | ! !   |      |
| 10/20   | 75.0  | 0.0   | 0.0  | >68  | 226 | .738  |       | .001               | .140  | 1        |       | 1     |      |
| 10/22   | 0.0   |       | !    | ì    | İ   | .044  |       | .001               | .078  | 1,600    | 2,880 |       |      |
| 11/3    | 53.0  | 0.0   | 5.6  | 5.6  | 45  | .167  |       | .007               | .069  | ı        |       |       |      |
| 11/ 5   | ì     |       | ĺ    |      |     | .111  |       | .003               | .346  | 5,600    | 1,300 |       |      |
| 11/17   | 52.0  | 0.0   | 4.9  | 21 . | 44  | .050  |       | .003               | <.001 |          |       |       |      |
| 11/19   | !     |       |      |      |     |       |       |                    |       | < 100    | 100   |       |      |
| 12/ 1   | 54.0  | 1,5   | 7.0  | 7.0  | 38  | . 106 |       | -001               | .002  |          |       | .68   |      |
| 2/ 3    | J     |       | 1    |      |     |       |       | 1                  |       | 1,970    | < 10  | l i   |      |
| 12/13   | 56.0  | 0.0   | 3.8  | 7.2  | 72  | .140  | .214  | .002               | .002  |          | j     | 1.77  |      |
| 12/15   | ŧ     |       | i    |      |     | Į     |       | ì                  |       | 3,800    | 30    |       |      |
| 12/29   |       |       |      |      |     | }     |       |                    |       |          | 2,000 |       |      |
| 12/30   | 59.0  | 0.0   | 4.8  | 13   | 49  | .272  | .476  | .002               | 0.0   |          |       | 2.11  |      |
| 1/12/77 |       |       |      |      |     |       | [     |                    |       | 400      | 3,400 | 3.23  |      |
| 1/13    | 65.0  | 0.0   | 2.2  | 27   | 61  | .151  |       | <.001              | .011  | l        |       | 1.52  | 26.0 |
| 1/25/77 |       |       |      | l    | l   |       | İ     |                    |       | 59,000   | 100   | 1 1   |      |
| 1/27    | 148.0 | 0.0   | 0.0  | >160 | 693 | 2.06  | 1     |                    |       | <b>†</b> |       | 12.21 | 58.0 |
| 2/ 8    |       |       | l    | ١.   | ١.  | 1     | 1     |                    |       | 54,000   | 5,500 | i I   |      |
| 2/ 9    | 59.0  | 0.0   | 0.7  | 46   | 107 | . 475 | 1.09  |                    |       | '        |       | 3.60  | 17.0 |
| 2/23    | 75.0  | 0.0   | 7.2  | 54.0 | 115 | . 678 | 2.29  | <.001              | <.001 |          |       | 3.75  |      |
| 2/22    |       |       |      |      | 1   | l     |       |                    | l     | 0 :      | 2,400 | 1 1   |      |
| 3/ 9    |       |       |      |      | [   | Ì     |       |                    |       | 20,000   | 200   | li    |      |
| 3/10    | 69.0  | 0.0   | 7.6  | 31   | 78  | .463  | .984  | .002               | .005  | l i      |       | .76   | 65.0 |
| 3/22    |       |       | ١.,. | l    |     |       |       |                    | 1     | 60,000   | 500   |       |      |
| 3/23    | 36.0  | 0.0   | 6.1  | 15   | 63  | .208  | .468  | .002               | .080  |          |       | .87   | 13.0 |
| 4/13    | 91.0  | 11.0  | 14.0 | 106  | 106 | .567  | >.567 | .010               | .063  | l .      |       | 4.40  | 19.0 |
| 4/15    |       |       | l i  | l    | Į.  | l     | l     |                    | 1     | 100,100  |       |       |      |
| 5/10    | 1     |       |      | i    | Ī   | I     |       |                    |       | 1240,000 |       | l l   |      |

Table 28. Results of chemical analyses of East Agana Bay storm drain effluent.

| DATE         | pH<br>UNITS  | TEMP.        | TURB.<br>(XTU'S) | Sp.COND<br>µmho/cm | SET. SOL | . TS        | SS   | VS         | VSS        | TDS        | cu"         | \$04=    | HARD<br>NESS | CA++<br>HARD |
|--------------|--------------|--------------|------------------|--------------------|----------|-------------|------|------------|------------|------------|-------------|----------|--------------|--------------|
| 7/12/76      | 7.85         | 30.0         | 3.9              | 3014               | ۲,۱      | 1902        | 2.4  |            |            | 1900       | 861         | { }      | !            |              |
| 7/14         |              | • •          | 6.2              |                    |          |             |      |            |            |            |             | <i>)</i> |              |              |
| 7/26         | 8.2B         | 29.4         | 160              | 66                 | .1 !     | 234         | 123  |            | 37         | 111        | 2.6         | i i      |              | i            |
| 8/10         | 7.60         | 31,2         | 2.6              | 2070               | ۲.1      | 642         | 6.0  |            | 2.9        | 636        | 577         | 1 1      |              | ĺ            |
| 8/24         | 7.60         | 30.9         | 19               | 383                | 7.1      | 857         | 25   | ! <b> </b> | 10         | 832        | 62          | 1 1      |              |              |
|              | 8.00         | 27.9         | 55               | 156                | 4.1      | 89          | 49   | i I        | 20         | 41         | 13          | 1 !      |              |              |
| 9/ 8         | 0.00         | 1            | 1                | 906                | <.1      | 722         | 4.7  |            | 29         | 717        | 196         | 74       |              |              |
| 9/22         |              | 28.9<br>28.2 | 1.4              | 2360               | ₹.1      | 1435        | 5.2  |            | 38         | 1429       | 631         | 1 .      |              |              |
| 0/ 6         | 8.00<br>7,72 | 29.9         | 3.1              | 1812               | ₹,1      | 1371        | 4.1  | 277        | 2.9        | 1367       | 1           | 1        |              | 1            |
| 1/20         | 7.80         | 29.4         | 8.3              | 1775               | - ¿.j !  | 1356        | 23   | 56         | 8.4        | 1333       | 485         | 1 1      | '            | 1            |
| 1/ 3<br>1/17 | 7.32         | 28.7         | 6.8              | 1579               | 4.1      | 694         | 6.8  | 107        | 3.7        | 687        | 434         | 1        | l .          | 1            |
| 2/ 1         | 7.75         | 29.9         | 20               | 3050               | <.1      | 3084        | 17.6 | 187        | 10         | 3066       | 807         | 13       | '            | ]            |
| 2/13         | 7.95         | 26.9         | iii              | 1577               | (،>      | 919         | 14   | 100        |            | 905        | 314         | 14       |              | •            |
| 2/30         | 7.68         | 28.5         | 5.3              | 8706               | <.1      | 5664        | 17   | 614        | 7.5        | 5545       | 2859        | 370      |              | )            |
| 1/13/77      | 8.30         | 27.1         | 2.4              | 1249               | ۲, ا     | 1173        | 19   | 51         | 4.6        | 1154       | 308         |          |              | l            |
| 1/27         | 7.70         | 27.3         |                  |                    | 0.0      | 1163        | 5.7  | 106        | 3.2        | 1157       | 478         | 1 '      | 1            | l            |
| 2/ 9         | 7.20         | 27.2         | 7.3              | 12830              | 0.0      | 806         | 164  |            | 12         | 640<br>152 | 4656<br>574 |          |              | l            |
| 2/23         | 7.80         | 29.0         | 1                | 2368               | 0.0      | 1413        | 2.5  | 155        | 2.3<br>3,5 | 976        | 373         | 1        | 308          | l            |
| 3/10         | 7.70         | 29.5         | 30               | 1692               | 0.0      | 976         | 4.2  | 139        | 20         | 232        | 37          | 203      | 777          | 58           |
| 3/23         | 7.37         | 30.7         | 55               | 408                | ۲.1      | 272<br>3072 | 2.8  |            | 1.8        | 3069       | 619         | - 45     | 320          | 220          |
| 4/13         | 7.46         | 30.0         | 1.4              | 2544               | ۲.۱      | 30/2        | 2.0  |            | 1.0        | 1 3303     | 1           |          |              | 1            |

| DATE   | T.ALK | P.ALK      | 00    | BOD | COD | P04-P  | TP   | NO2-N | NO3-N | TC         | FC     | MBAS | DIL |
|--------|-------|------------|-------|-----|-----|--------|------|-------|-------|------------|--------|------|-----|
| /12/76 | 31    | <b>—</b> — | 1.6   | 1.4 | 32  | .026   |      | .069  | <.5   |            |        |      |     |
| 714    |       |            | l i.i |     | 1   |        |      | .202  |       | 1          |        |      |     |
| /26    | 88    | 1.5        | 6.6   | 2.7 | 43  | .028 - |      | .034  | .009  |            |        |      |     |
| /10    | 297   | 0.0        | 4.4   | 2.5 | 4.7 | .018   |      | .047  | <.5   |            |        |      |     |
| /24    | 126   | 0.0        | 3.6   |     | 30  | .008   |      | .015  | .238  |            |        |      |     |
| / 8    | 97    | 0.0        | 5.7   | 1.2 | 38  | .030   |      | .002  | .312  | ŀ          |        |      |     |
| /22    | 270   | 0.0        | 3.1   | 1.3 | 9.1 | .031   |      | .077  | 7.4   | 3,000      | l :    |      |     |
| / 6    | 296   | 0.0        |       | 1.7 | 7.8 | .032   |      | .059  | 1.89  |            |        |      |     |
| /13    |       |            |       | ĺ   | 1   |        |      |       |       | 10,100     | 520    |      |     |
| /20    | 220   | 0.0        | 2.7   | 1.2 | 15  | .014   |      | .035  | .607  |            |        |      |     |
| /22    | ľ     |            |       |     | 1   | .010   |      | .013  | .405  | 54,000     | 9,800  |      |     |
| / 3    | 253   | 0.0        | 5.0   | 1.9 | 14  | .020   |      | .020  | 1.03  |            | l '    |      |     |
| / 5    | İ     | }          |       |     | 1   | !      |      | ĺ     | l     | 87,000     | 39,300 |      |     |
| Ú17    | 278   | 0.0        | 3.4   | .6  | 17  | .014   |      | . 084 | 1.15  |            | l      |      |     |
| /19    |       |            | 1     |     |     | ļ      |      |       | l _   | 31,00      | 1,100  |      |     |
| 9.1    | 273   | 0.0        | 2.6   | 1.6 | 9.2 | .003   | ł    | .065  | .378  |            | l      | .34  |     |
| •      |       | i          | 4     |     | 1   |        |      |       | l     | 35,00      | <100   |      |     |
| 1/13   | 294   | 0.0        | 2.9   | 1.4 | 16  | .014   | .036 | .059  | 1.06  | ı          | l _ `  | .36  |     |
| /15    |       |            |       |     |     | 1      |      |       | l     | 15,00      | 370    |      |     |
| /29    |       |            |       |     | [   |        | ŀ    |       | Ι.    |            | 8,000  |      | !   |
| /30    | 264   | 0.0        | 3.4   | 1.7 | 18  | .029   | .058 | .026  | .602  |            | l      | .41  | 1   |
| /12/77 |       |            | ŀ     |     | İ   |        |      |       | l     | 40,000     | 2,800  |      |     |
| /13    | 436   | 3.5        | 6.5   | 1.2 | 8   | .047   | ļ .  | .039  | 2.34  | l          | l      | .18  | 11  |
| /25    |       |            | !     | ļ   | F   | 1      | İ    |       | ļ     | 2,900      | 90     |      |     |
| /27    | 20    | 0.0        | 3.8   | 1   | 3.2 | .011   | .021 | .035  | 1.33  |            |        |      | 18  |
| / 8    |       |            |       | ]   | 1   |        |      |       | ļ     | 9,600      | 5,500  |      |     |
| / 9    | 244   | 0.0        | 4.8   | 2.6 | 41  | .028   | .047 | .030  | 1.07  |            | l .    | 1.07 | 2.  |
| /22    |       | 1          |       | }   |     |        |      | 1     |       | 40,000     | 550    |      |     |
| 2/23   | 336   | 0.0        | 7.3   | 2.0 | 12  | .006   | .014 | .050  | 2.05  | l <b>.</b> |        | .28  |     |
| ý g    | 1     |            |       | 1   |     |        |      |       |       | 60,000     | 1,350  |      |     |
| /10    | 252   | 0.0        | 5.3   | 3.0 | 16  | .036   | .037 | .036  | .725  | l          |        | 061  |     |
| 1/22   | 1     | 1          | l     |     | 1   |        | ۱    |       |       | 50,000     | 1,600  | 10   |     |
| 1/23   | 90    | 0.0        | 6.0   | 5.0 | 39  | .042   | .044 | .005  | .231  | 21,500     | 100    | ,29  |     |
| 1/ 5   |       | 1          | ء د ا | !   | 1,, | 010    | .058 | .036  | 1.03  | 21,300     | 1 100  | . 15 |     |
| /13    | 294   | 0.0        | 4.5   | i   | 13  | .010   | .026 | ,030  | 1.03  | 24.00      | 30     | '''  |     |
| 5/10   | I     | I          | I     | I   | 1   | ı      | I    | į.    | I     | 24,00      | , Ju   |      |     |

Table 29. Results of chemical analyses of Naval Air Station storm drain effluent.

| DATE                                                                    | PH<br>UNITS                                                                                                       | TEMP.                                                                                                               |                                                                                 | Sp.CUNU.<br>µmha/cm                                                                                      | SET.SOL.                                                    | TS                                                                                                            | ss                                      | VS                                         | vss                                               | TDS                                                                  | ÇL_                                                      | SO4=            | HARÙ<br>NESS | CA++<br>HARD |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------|--------------|--------------|
| 7/26<br>8/10<br>8/24<br>9/ 8<br>9/22<br>10/ 6<br>10/20<br>1]/ 3 no samp | 6.90<br>6.90<br>6.90<br>6.90<br>7.24*<br>7.05*<br>11e hig<br>7.20*<br>7.18<br>7.22<br>7.55<br>6.38<br>DRY<br>6.72 | 28. °2<br>27. °4<br>27. °5<br>27. °3<br>27. °3<br>27. °2<br>27. °3<br>27. °2<br>27. °3<br>27. °2<br>27. °4<br>27. 6 | .29<br>5.40<br>.28<br>.16<br>32.0<br>.45<br>.16<br><br>.16<br>.22<br>.13<br>.20 | 2,079<br>1,961<br>1,864<br>1,877<br>1,819<br>1,872<br>1,761<br>2,226<br>2,271<br>2,295<br>2,243<br>1,545 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 1,252<br>733<br>1,410<br>907<br>1,621<br>1,479<br>1,242<br>1,204<br>1,556<br>2,024<br>1,352<br>1,287<br>1,029 | 0.2<br>1.4<br>1.2<br>2.8<br>1.6<br><1.0 | 136<br><br>126<br>264<br>258<br>201<br>195 | 2.6<br>0.3<br>1.3<br>0.0<br>1.0<br>0.6<br>0.2<br> | 1,252<br>730<br>1,409<br>905<br>1,621<br>1,478<br>1,237<br>1,204<br> | 475<br>309<br>505<br>495<br>527<br>521<br>500<br>556<br> | 74<br><br>123.0 | 405          | 310          |

| DATE    | T.ALK   | P. ALX  | 00   | BOD  | 000   | PO4+P | TP   | NO2-N | N03-N   | TÇ    | FC   | MBAS  | OIL  |
|---------|---------|---------|------|------|-------|-------|------|-------|---------|-------|------|-------|------|
| 7/12/76 | 32      | 0.0     | 5.0  | 0.8  | 3.0   | .012  |      | 0.00  | < . 500 |       |      |       |      |
| 7/26    | 179     | 0.0     | 5.1  | 0.1  | 0.0   | .030  |      | .002  | < .500  |       |      |       |      |
| 8/10    | 244     | 0.0     | 4.8  | 0.5  | 0.0   | .004  |      | 0.00  | <.500   |       |      |       |      |
| B/24    | 266     | 0.0     | 4.0  |      | 0.0   | .007  |      | .009  | <.500   | 1.00  |      |       |      |
| 9/22    | 272     | 0.0     | 4.1  | 0.5  | 3.2   | .009  |      | 0.00  | <.500   | <100  |      |       |      |
| 10/6    | 270     | 0.0     |      | 0.5  | 15.2  | .030  | ]    | .601  | 2.50    |       | امما |       |      |
| 10/13   |         |         | Ι    | l    |       |       | 1    | 1     |         | 6     | 0.0  |       |      |
| 10/20   | 1       |         | 4.9  | 0.22 | 1.6   | .011  |      | 0.00  | 2.51    |       | •    |       |      |
| 10/22   | no samp | le high | tide |      |       |       |      | 1     |         |       |      | l i   |      |
| 11/5    |         |         | l    | l    | 1     | .008  | •    | <.001 | 2.42    | 34    | 0.0  |       |      |
| 11/17   | 276     | 0.0     | 5.4  | 0.1  | 4.8   | .008  | !    | 0.00  | 2.45    | ••    | ١    |       |      |
| 11/39   |         |         |      | l .  |       |       | [    | 0.00  | 2.48    | 19    | 0.0  |       |      |
| 12/ l   | 266     | 0.0     | 5.4  | 0.2  | 0.0   | .003  |      | .005  | 2.44    | 00    | ٠,   | '     |      |
| 12/ 3   |         |         | l    | 1    | 1     | l     |      |       |         | 88    | 0.0  |       |      |
| 12/13   | 271     | 0.0     | 4.9  | 0.0  | 0.5   | .008  | .012 | 0.00  | 2.51    | 18    |      | E     |      |
| 12/15   |         |         |      |      |       |       |      |       |         | 18    | 0.0  |       |      |
| 12/29   | 1       |         | ١    | 1    | مہ ا  |       |      |       | 7 70    |       | 12   |       | Į.   |
| 12/30   | 270     | 0.0     | 5.1  | 0.2  | 8.9   | .009  | .020 | .003  | 2.29    | .100  | 3    |       | i .  |
| 1/12/77 | 1       |         | l    | 1    | ١     | ٠     |      |       | ایریا   | <100  | 3    | .14   | ŀ    |
| 1/13    | 279     | 0.0     | 4.9  | 1.8  | 20.0  | .017  |      | 0.00  | 2.14    |       | 28   | . 14  |      |
| 2/22    | l       | ۱.,     | ١    | l    | ء ۽ ا |       | 005  | 005   | 2 42    | 0     | 40   | .14   | İ    |
| 2/23    | 267     | 0.0     | 5.0  | 1.9  | 9.5   | .001  | .005 | .005  | 2,43    | 1 460 | 5    | .14   | l    |
| 3/22    | l       | Ι       | 1    | ١    | ١ ـ   |       |      |       | 2 24    | 1,460 | , ,  | .12   | l    |
| 3/23    | 266     | 0.0     | 5.4  | 0.2  | 18.0  | .002  | .002 | <.001 | 2.24    | 275   | 12   | 1 .12 | l    |
| 4/5     | l       | l       | ·    | 1    | ہ ـ ا |       | ١    | ۱ ۸۸۸ | 1       | 535   | 14   | .13   |      |
| 4/13    | 265     | 0.0     | 5.1  | ì    | 0.6   | <.001 | .004 | .002  | 2.48    |       | .,   | '13   | l '' |
| 5/10    | I       | l       | I    | 1    | }     | I     |      | I     | 1 1     | 690   | 67   | ł     | ı    |

Table 30. Results of chemical analyses of West Agana Bay storm drain effluent.

| CATE         | pH<br>STIMU    | TEMP. | TURB<br>(NTU'S)    | Sp.COND.<br>umbo/cm | SET.COL. | 75   | ss    | VS  | VSS   | TOS  | CL-  | S04= | HARD-<br>NESS | CA++ |
|--------------|----------------|-------|--------------------|---------------------|----------|------|-------|-----|-------|------|------|------|---------------|------|
| 7/12/76      | 8.05           | 28.0  | 15                 | 71 <b>7</b>         | G.0      | 586  | 9.3   | Τ-  |       | 583  | 90   |      | <del> </del>  | 1    |
| 7/26         | 7.20           | 27.6  | 140                | 87                  | .05      | 136  | 123   |     | 45.0  | 13   | 1.0  |      | 1             | 1    |
| 8/10<br>8/24 | DRAIN<br>DRAIN |       | FLOWING<br>FLOWING |                     |          |      |       |     |       |      |      |      | l             |      |
| 9/8          | 7.80           | 28.0  | 32                 | 262                 | l        | 1168 | 111   | i   | ~11.2 | 1158 | 527  |      | 1             |      |
| 9/22         | 1              | 27.3  | 3.4                | 654                 |          | 696  | 4.4   |     | 3.6   | 695  | 47   | 225  |               |      |
| 10/6         | 7.61           | 28.7  | 2.8                | 1652                | ∢ .1     | 1664 | 20.5  | ļ . | 4.0   | 1644 | 85   |      |               | 1    |
| 70/20        | 8.14*          | 29.1  | 4.7                | 691                 | < .1     | 765  | 7.5   | 132 | 3.9   | 759  | 74   |      |               | [    |
| 11/ 4        | 7.36           | i     | 4.2                | 1460                | < .1     | 3406 |       | 169 | i     | 1 .  |      |      |               | ĺ    |
| 11/17        | 8.40*          |       | 8.8                | 712                 | ۱. >     | 405  | 7.4   | 55  | 4.7   | 398  | 36   |      | f             |      |
| 12 /         | 8.20           | 1     | 2.8                | 307                 | ٠.1      | 2324 | 8     | 254 | 4.0   | 2316 | 2158 | 245  |               |      |
| 12/13        | 8.12           | 26.9  | 80                 | 717                 | .15      | 716  | 90    | 251 | ĺ     | 626  |      | 99   |               |      |
| 12/30        | 8.2G           | 27.0  | 1.4                | 622                 | 0.0      | 400  | 3.5   | 71  | 1.9   | 398  | 37   | 63.8 | •             |      |
| 1/12/77      | 8.50           | 26.7  | 1.8                | 589                 | 0.0      | 409  | 2.9   | 44  | 2.4   | 406  | 18   |      |               |      |
| 2/23         | 7.78           | 27.2  |                    | 506                 | 0.0      | 330  | < 1.0 | 22  | < 1.0 | 330: | 40   |      |               | 138  |
| 3/10         | 8.30           | 25.0  | . 52               | 549                 | 0.0      | 296  | 1.1   | 44  | 2.3   | 295  | 101  |      | 138           | 96   |
| 3/23         | 7.26           | 27.5  | .60                | 249                 | 0.0      | 66   | <.1   |     | li    | 66   | 21   | 2.6  | 94            | 77   |
| 4/13         | 7.95           | 28.0  | .40                | 296                 | 0.0      | 448  | 1.3   | i   | 447   | 447  | 16   | 4.4  | 126           | 118  |

| DATE    | T.ALK | P.ALK | 00     | 800  | COD | PO <sub>4</sub> -P | T-P     | NO2-N | NO3-N | TC         | FC          | MBAS         | 011 |
|---------|-------|-------|--------|------|-----|--------------------|---------|-------|-------|------------|-------------|--------------|-----|
| 7/12/76 | 12    | 0.0   | 6.1    | 7.65 | 135 | .032               | <b></b> | .049  | .312  | † ···      | <del></del> | <del> </del> | !-  |
| 7/26    | 72    | 1.2   | 6.8    | 2.8  | 20  | .027               |         | .030  | .036  | ļ          |             | l            |     |
| 8/10    | DRAIN | NOT   | FLOWIN |      | ļ   |                    | ı       |       |       |            | ł           | Į.           | ]   |
| 8/24    | DRA]N |       | FLOWEN |      |     | 1                  | l       | 1     | )     |            | ;           | ŀ            |     |
| 7/8     | 128   | 0.0   | 4.3    | 2.9  | 33  | .016               | 1       | .004  | .097  | 1          | t           | ]            | !   |
| 9/22    | 157   | 2.8   | 6.3    | 1.7  | 16  | .043               |         | .017  | . 558 | ~63,000    |             | i            |     |
| 0/ 6    | 51    | 0.0   | i      | 0.7  | 2.2 | . 054              |         | .073  | 4.56  | 1 1        | 1           | l            | ]   |
| 0/13    |       | ] ,   |        |      | !   | 1                  | ì       | 1     |       | 20,000     | 600         |              | i   |
| 0/20    | !     | 0.0   | 6.9    | 1.8  | 19  | .004               | ļ       | 1.001 | 1.93  | ,          |             |              |     |
| 0/22    | ſ     |       |        |      |     |                    | ŀ       | 1     |       | 12,000     | 27,200      |              |     |
| 1/ 4    | 74    | 0.0   | 9.2    | 1.5  | 1.4 | .002               |         | .063  | 3.30  |            |             |              |     |
| 1/5     |       |       |        | [    | ļ   | .061               |         |       | 1,10  | 253,000    | 6,000       |              |     |
| 1/12    | 206   | 5.9   | 7.8    | 0.3  | 111 | .008               |         | .013  | 1.93  | 120,000    |             |              |     |
| 1/19    | [     |       |        |      |     |                    | i       |       | ,,,,, | <1,000     | <1,000      |              |     |
| 2/ 1    | 212   | 0.0   | 7.4    | 0.5  | 14  | .002               |         | 0.0   | 1.43  | .,,,,,,    | ,500        |              |     |
| / 3     |       |       |        |      |     | 1                  |         | * * * |       | 16,300     | < 100       |              |     |
| 2/13    | 127   | 0.0   | 7.1    | 11.7 | 84  | .006               | .079    | .051  | 1.38  |            | ` ''00      | .86          |     |
| 2/15    |       |       | - 1    |      |     |                    |         | 1001  | 1,,00 | 2,200      | 120         | ,04          |     |
| 2/29    |       |       |        |      |     |                    |         |       |       |            | 300         |              |     |
| /30     | 241   | 0.0   | 7.8    | 0.2  | 2.9 | <.001              | .032    | .008  | 1.75  |            | 300         |              |     |
| /32/77  |       |       |        | '    |     |                    | ****    |       | ,     | 48,000     | 5,800       |              |     |
| /13     | 270   | 8.0   | 6.9    | 0.27 | 0   | .029               |         | .003  | 1.04  | 10,000     | 2,000       | .03          |     |
| /23     | 233   | 0.0   | 7.5    | 0.4  | 3.0 | .001               | .001    |       | .006  | - 1        | Ī           | .03          |     |
| i/10    | 88    | 0.0   | 7.0    | 0.3  | 3.3 | .020               | .042    | .002  | 1.07  | !          | - 1         |              |     |
| /22     |       |       |        |      |     |                    |         | , 552 | ''''  | <b>₹10</b> | o           | ľ            |     |
| 723     | 70    | 0.0   | 7.0    | 0.5  | 7.9 | .006               | .008    | <.001 | . 085 | 110        | ٧           | .05          |     |
| 7 5     |       | 1     |        | 1    |     |                    | .000    |       | .005  | ol         | o           | .us          |     |
| /13     | 117   | 0.0   | 7.3    |      | 0.0 | .007               | .009    | <.001 | .363  | ١          | ٧           | i            |     |
| žii l   |       |       |        | ŀ    | 2.0 | .~~,               | .003    |       |       | 290        |             |              |     |
|         | •     |       | '      | ,    |     | •                  |         |       |       | 290        | ı           |              |     |

Table 31. Results of chemical analyses of auxillary site urban runoff.

| DATE    | pH<br>UNITS  | TEMP. | TURB<br>(NTU <sup>1</sup> S) | Sp.COMO:<br>umho/cm | SET.COL  | TS.   | s\$ | ٧s   | YSS     | TOS  | CL- | S04= | HARD-<br>NESS | ÇA++<br>HARD |
|---------|--------------|-------|------------------------------|---------------------|----------|-------|-----|------|---------|------|-----|------|---------------|--------------|
|         | <del> </del> | 11    |                              | CAMP 1              | ATKINS R | BAD   |     |      |         |      |     |      |               | !            |
|         |              | 29.0  | 1.3                          | 879                 |          | i     | 5.5 |      | 3.9     | •    | 14  | 1    | 248           | 105          |
| 3/10/77 | 7.23         | 30.8  | 30                           | 356                 | ₹.1      | !!    | 20  |      | 10      | i    | 41  | l    | 115           | 275          |
| 3/23    | 6.90<br>7.02 | 29.5  | 2.0                          | 976                 | ò        | 1180  | 4.9 |      | 3,2     | 1174 | 132 | 1    | 330           | 1            |
| 4/13    | 7.02         | 23.3  | 1.0                          | 3,0                 | ,        | i     |     | l    |         |      |     |      | ì             |              |
|         | 1            |       |                              | DEDEDO              | PONDING  | BASIN |     |      |         | 1    | i   |      |               | 1            |
| 3/ 3/76 | 9.25         | 28.8  | 3.0                          | 83                  |          |       |     | İ    | ļ       |      |     |      | ,             | 1            |
| 3/ 4    | 9.20         | 31.5  | 2.5                          | 79                  |          | 1 1   | 1   | l    | 1       | l    | ļ   |      | i             | F            |
| 3/23    | 9.20         | 32.5  | 2.7                          | 65                  |          |       |     | ļ    |         | l    | 1   |      | ļ             | ł            |
| 3/24    | 9.90         | 33.0  | 2.8                          | 69                  |          | ,     | ļ.  | 1    | 1       | l    |     | ì    | 1             | 1            |
| 3/25    | 9.30         | 32.6  | 4.0                          | 72                  | i        | ì     | i   |      | 1       | 1    | 1   | 1    | 1             | 1            |
| 3/26    | 9.60         | 31.5  | 8.8                          | 64                  | ì        | 1     | ĺ   | 1    | İ       |      |     | ŀ    |               | 1            |
| 4/ 2    | 9.60         | 33.0  | 2.5                          | 76                  | 1        | 1     |     |      | j       | !    |     | 1    |               | -            |
| 7/10    | 7.60         | 26.4  | 13                           | 100                 | 1        | 66    | 8.2 | 117  | ì       | 58   | 2.9 | 1    |               |              |
|         |              |       | i                            | LATTE               | HEIGHTS  | STATE | PON | DING | BASIN # | 1    |     |      |               |              |
| 1/14/76 |              | 32.4  | 5.8                          | 1                   | 1        |       | l   | 1    | 1       | 1    |     | ŀ    | }             |              |
| 2/ 5    | 7.90         | 27.8  | 43                           | 87                  |          | 1     | l   |      |         | 1    | 1   | 1    |               | 1            |
| 2/12    | 8.60         | 28.6  | 78                           | 56                  |          |       | 1   | l    |         | 1    | 1   |      |               |              |
| 3/ 3    | 9.20         | 31.1  | 9.2                          | 89                  | ł.       | 1     |     | ł    | ļ       | 1    | ,   |      | 1             |              |
| 3/ 4    | B.25         | 32.3  | 2.4                          | 169                 |          |       |     |      | 1       | 1    | i   | 1    | 1             | ł            |
| 3/23    | 9.30         | 32.5  | 2.7                          | 81                  | 1        | 1     |     | 1    | 1       | l l  | 1   |      | 1             | -            |
| 3/24    | 9.95         | 1     | 5.2                          | 88                  | 1        | Į.    | İ   | 1    | i       | 1    | 1   | ŀ    |               | i            |
| 3/25    | 9.80         | 33.4  | 4.8                          | 89                  | ĺ        | ì     |     | 1    | 1       | 1    |     | 1    | 1             |              |
| 3/26    | 9.80         | 31.6  | 8.2                          | 87                  | 1        | 1     | 1   | l    | 1       | 1    | 1   | i    | 1             | l            |
| 4/ 2    | 9, 25        | 34.1  | 6.8                          | 89                  | 1        | 1     | L.  |      |         | l    | ١., |      | 1             |              |
| 7/19    | 8.20         | 27.0  | 18                           | 72                  |          | 58    | 14  | 81   |         | 44   | 3.  | 7    | 1             | 1            |

| DATE                    | T.ALK          | P.ALX           | DO         | BOD        | COD       | PO <sub>4</sub> -P   | T-P          | NO <sub>2</sub> -N | NO <sub>3</sub> -N           | TC     | FC  | MBAS       | OIL      |
|-------------------------|----------------|-----------------|------------|------------|-----------|----------------------|--------------|--------------------|------------------------------|--------|-----|------------|----------|
|                         | <u> </u>       |                 |            |            | CAMP      | WATKINS              | ROAD         |                    |                              |        |     |            |          |
| 3/10/77<br>3/23         | 215<br>96      | 0               | 3.2<br>1.8 | 4.0<br>5.0 | 34<br>7.8 | .136<br>.070         | ,221<br>,006 | <.001<br>.150      | .031                         | 7,000  | 700 | .32<br>.27 | 20<br>18 |
| I/ 5<br>I/13<br>I/10    | 260            | 0               | 4.2        |            | 2.4       | .056                 | .071         | .007               | .125                         | 68,000 | 200 |            | 8.       |
|                         | l              |                 |            |            | DEDED     | 1                    | G BA         | .102               | o                            |        |     |            | Į.       |
| 3/ 3/76<br>3/ 4<br>3/23 | 47             | 6.7<br>7.9      | 9.3        |            |           | .008                 |              | 0                  | .008                         |        |     |            |          |
| 3/24<br>3/25            | 39<br>33<br>38 | 13<br>12        |            |            |           | .008                 |              | 0                  | . 203<br>. 147<br>. 159      |        |     | <u>.</u>   |          |
| 3/26<br>4/ 2<br>7/19/76 | 36<br>34<br>47 | 8.3<br>14<br>0  | 6.8        | 4.9        | 13        | .025                 |              | ,002<br>,003       | .028                         |        |     |            |          |
|                         |                |                 |            |            | LATTE     | HE1GHT:              | EST          | TES #3             |                              |        |     | 1          |          |
| 1/ 1/76<br>1/14<br>2/ 5 | ļ              | 37              | 11.5       |            |           | .027<br>.013<br>.007 |              | .023               | . 289<br>> . 5<br>0<br>. 159 |        |     |            |          |
| 2/12                    | 46             | 38<br>42<br>8.3 | 7.6<br>5.2 | 9.0        |           | 0.014                | ļ            | .046               | 0.137                        |        |     |            |          |
| 3/ 4<br>3/23<br>3/24    | 46<br>40       | 16<br>16        |            |            | i         | 0.003                |              | 0                  | .011<br>.067<br>.025         |        |     |            |          |
| 3/25<br>3/26<br>4/ 2    | 39<br>38<br>39 | 18<br>14<br>10  |            |            |           | 0.003                |              | 0                  | .013                         |        | ]   |            |          |
| 7/19                    | 33             | 1.7             | 5.6        | .4         | 23        | , 032                |              | .003               | .004                         | 1      |     |            |          |

Table 32. Results of chemical analyses of Tumon Bay ground-water seepage.

| DATE            | pH<br>UNITS  | TEMP.        | TURB<br>(NTU'S | Sp.COND.<br>µmhe/cm | SET. COL | TS           | 55        | vs  | vss | TOS          | a-         | S04* | HARD NESS  | CA++<br>HARD |
|-----------------|--------------|--------------|----------------|---------------------|----------|--------------|-----------|-----|-----|--------------|------------|------|------------|--------------|
|                 | Ţ            |              |                |                     | TUHON    | BAY 511      | Εl        |     |     |              |            |      |            |              |
| 7/12/76<br>7/26 | 6.90<br>7.00 | 28.0<br>27.0 | .14            | 4417<br>2554        | 0        | 2858<br>1643 | 2.5       |     |     | 2858         | 1277       |      |            |              |
| 12/31           | 7.30         | 26.9         | .12            | 2528                | U        | 1611         | .2<br>4.9 | 260 | 1.6 | 1543<br>1506 | 794<br>557 | 51.9 |            |              |
|                 |              |              |                |                     | TUMON    | BAY SIT      | E 2       |     |     | ļ            |            |      |            |              |
| 7/12/76         | 6.90         | 28.0         | . 27           | 8522                |          | 5748         | 2.5       |     |     | 5746         | 2630       |      |            |              |
| 7/26            | 7.00         | 26.5         | .30            | 7427                |          | 5250         | 3.2       | 2.6 |     | 5337         | 2640       |      |            |              |
|                 |              |              |                |                     | TUMON    | BAY SIT      | E 3       |     |     |              |            |      |            |              |
| 7/12/76         | 7.00         | 28.0         | .22            | 7795                |          | 6146         | 3.8       |     |     | 6310         | 2514       |      |            |              |
|                 |              |              |                |                     | TUMON    | BAY SIT      | E 4       |     |     |              |            |      |            |              |
| 7/12/76         | 7.00         | 27.0         | .23            | 9665                |          | 6146         | 3.8       |     |     | 6142         | 3119       |      | ' <b>j</b> |              |

| BATE                              | T.ALK             | P. ALK | DO                | BOD       | coo               | PO4-P                        | T-P   | NO2-N          | NO3-N                     | TC | FC       | MBAS | OIL |
|-----------------------------------|-------------------|--------|-------------------|-----------|-------------------|------------------------------|-------|----------------|---------------------------|----|----------|------|-----|
|                                   |                   |        |                   |           | TUMON             | BAY S                        | TTE I |                |                           |    |          |      |     |
| 12/11/75<br>7/12<br>7/26<br>12/31 | 276<br>248<br>261 | 0      | 4.0<br>3.5<br>3.8 | 1.1       | 5.3<br>1.0<br>1.7 | .003<br>.012<br>.008<br>.007 | .015  | 0000           | >.5<br>>.5<br>>.5<br>3.39 |    |          |      |     |
|                                   |                   |        |                   | Ì         | TUMON             | BAY 5                        | ITE 2 |                | ]                         |    |          |      |     |
| 12/11/75<br>7/12/76<br>7/26       | 262<br>232        | 0      | 3.7<br>3.6        | .4<br>1.2 | 28<br>7.0         | .012<br>.018                 | !     | 0<br>0<br>.064 | >.5<br>>.5<br>>.5         |    |          |      |     |
|                                   |                   |        |                   |           | TUMON             | BAY S                        | ITE 3 |                |                           |    |          |      |     |
| 12/31/75<br>7/12/76               | 276               |        | 3.8               | .3        | 14                | .028<br>.017                 |       | . 006<br>0     | >,5<br>>.5                |    |          |      |     |
|                                   |                   |        |                   |           | TUMON             | BAY ST                       | ΤE 4  |                |                           |    |          |      | İ   |
| 12/11/75<br>7/12/76               | 277               |        | 4.8               | .2        | 41                | .025<br>.022                 |       | 0              | >.5<br>>.5                |    |          |      |     |
|                                   |                   |        |                   |           | TUMON             | BAY SI                       | TE 5  |                |                           |    |          |      |     |
| 12/11/75<br>7/12/76               |                   |        |                   |           |                   | .005<br>.355                 | Ì     | .008           | >.5<br>>.5                |    | <b>.</b> |      |     |